Menu Close

Q-If-is-a-root-of-the-equation-x-3-3x-1-0-prove-that-the-other-roots-are-2-2-and-2-2-Please-help-




Question Number 33193 by SammyKT last updated on 12/Apr/18
Q.  If α is a root of the equation                     x^3 −3x−1=0,          prove that the other roots are          2−α^2  and α^2 −α−2.          Please help.
Q.Ifαisarootoftheequationx33x1=0,provethattheotherrootsare2α2andα2α2.Pleasehelp.
Answered by MJS last updated on 12/Apr/18
x^3 +0x^2 −3x−1=0    (x−α)(x−β)(x−γ)=0  x^3 −(α+β+γ)x^2 +(αβ+αγ+βγ)x−αβγ=0  ⇒ −(α+β+γ)=0    now we set β=2−α^2  and γ=α^2 −α−2    α+2−α^2 +α^2 −α−2=0  true
x3+0x23x1=0(xα)(xβ)(xγ)=0x3(α+β+γ)x2+(αβ+αγ+βγ)xαβγ=0(α+β+γ)=0nowwesetβ=2α2andγ=α2α2α+2α2+α2α2=0true
Commented by SammyKT last updated on 13/Apr/18
Thank you
Thankyou

Leave a Reply

Your email address will not be published. Required fields are marked *