Menu Close

Q-if-x-1-x-2cos-prove-it-x-n-1-x-n-2cos-n-




Question Number 191610 by mehdee42 last updated on 27/Apr/23
Q: if  x+(1/x)=2cos(θ)  prove it  x^n +(1/x^n )=2cos(nθ)
$${Q}:\:{if}\:\:{x}+\frac{\mathrm{1}}{{x}}=\mathrm{2}{cos}\left(\theta\right)\:\:{prove}\:{it}\:\:{x}^{{n}} +\frac{\mathrm{1}}{{x}^{{n}} }=\mathrm{2}{cos}\left({n}\theta\right) \\ $$
Answered by Frix last updated on 27/Apr/23
z+(1/z)=2c ⇒ z=c±(√(c^2 −1)) ⇒  x=cos θ ±i sin θ =e^(±iθ)   x^n +(1/x^n )=e^(±inθ) +e^(∓inθ) =2cos nθ
$${z}+\frac{\mathrm{1}}{{z}}=\mathrm{2}{c}\:\Rightarrow\:{z}={c}\pm\sqrt{{c}^{\mathrm{2}} −\mathrm{1}}\:\Rightarrow \\ $$$${x}=\mathrm{cos}\:\theta\:\pm\mathrm{i}\:\mathrm{sin}\:\theta\:=\mathrm{e}^{\pm\mathrm{i}\theta} \\ $$$${x}^{{n}} +\frac{\mathrm{1}}{{x}^{{n}} }=\mathrm{e}^{\pm\mathrm{i}{n}\theta} +\mathrm{e}^{\mp\mathrm{i}{n}\theta} =\mathrm{2cos}\:{n}\theta \\ $$
Commented by mehdee42 last updated on 27/Apr/23
very nice sir
$${very}\:{nice}\:{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *