Menu Close

Q-If-x-y-z-and-determinant-x-x-3-x-4-1-y-y-3-y-4-1-z-z-3-z-4-1-0-Prove-that-xyz-xy-yz-zx-x-y-z-please-help-




Question Number 36154 by SammyKT last updated on 29/May/18
Q.  If x≠y≠z  and   determinant ((x,x^3 ,(x^4 −1)),(y,y^3 ,(y^4 −1)),((z ),z^3 ,(z^4 −1)))=0    Prove that  xyz(xy+yz+zx)=(x+y+z)    please help.
$${Q}.\:\:{If}\:{x}\neq{y}\neq{z}\:\:{and}\:\:\begin{vmatrix}{{x}}&{{x}^{\mathrm{3}} }&{{x}^{\mathrm{4}} −\mathrm{1}}\\{{y}}&{{y}^{\mathrm{3}} }&{{y}^{\mathrm{4}} −\mathrm{1}}\\{{z}\:}&{{z}^{\mathrm{3}} }&{{z}^{\mathrm{4}} −\mathrm{1}}\end{vmatrix}=\mathrm{0} \\ $$$$ \\ $$$${Prove}\:{that}\:\:{xyz}\left({xy}+{yz}+{zx}\right)=\left({x}+{y}+{z}\right) \\ $$$$ \\ $$$${please}\:{help}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *