Question Number 173687 by mnjuly1970 last updated on 16/Jul/22
$$ \\ $$$$\:\:\:{Q}\::\:\:\:\:\:\frac{{ln}\left({a}\:\right)}{{c}−{b}}\:=\frac{{ln}\left({b}\right)}{{a}−{c}}\:=\:\frac{{ln}\left({c}\right)}{{b}−{a}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\Rightarrow\:\:\:{a}^{\:{a}} .\:{b}^{\:{b}} .\:{c}^{\:{c}} \:=? \\ $$$$ \\ $$
Answered by Rasheed.Sindhi last updated on 17/Jul/22
$$\:\:\:\:\:\frac{{ln}\left({a}\:\right)}{{c}−{b}}\:=\frac{{ln}\left({b}\right)}{{a}−{c}}\:=\:\frac{{ln}\left({c}\right)}{{b}−{a}} \\ $$$$\:\:\frac{{ln}\left({a}\:\right)}{{c}−{b}}\:=\frac{{ln}\left({b}\right)}{{a}−{c}} \\ $$$$\left({a}−{c}\right)\:\mathrm{ln}\:{a}\:=\:\left({c}−{b}\right)\:\mathrm{ln}\:{b} \\ $$$$\mathrm{ln}\:{a}^{{a}−{c}} =\mathrm{ln}\:{b}^{{c}−{b}} \\ $$$${a}^{{a}−{c}} =\:{b}^{{c}−{b}} \\ $$$$\frac{{a}^{{a}} }{{a}^{{c}} }=\frac{{b}^{{c}} }{{b}^{{b}} } \\ $$$${a}^{{a}} {b}^{{b}} =\left({ab}\right)^{{c}} ……………….\left({i}\right) \\ $$$$\frac{{ln}\left({b}\right)}{{a}−{c}}\:=\:\frac{{ln}\left({c}\right)}{{b}−{a}} \\ $$$$\left({b}−{a}\right)\:\mathrm{ln}\:{b}\:=\:\left({a}−{c}\right)\:\mathrm{ln}\:{c} \\ $$$$\mathrm{ln}\:{b}^{{b}−{a}} =\mathrm{ln}\:{c}^{{a}−{c}} \:\:\:\: \\ $$$$\:{b}^{{b}−{a}} =\:\:{c}^{{a}−{c}} \:\:\:\: \\ $$$$\frac{{b}^{{b}} }{{b}^{{a}} }\:=\:\frac{{c}^{{a}} }{{c}^{{c}} } \\ $$$${b}^{{b}} {c}^{{c}} =\left({bc}\right)^{{a}} ……………..\left({ii}\right) \\ $$$$\:\:\frac{{ln}\left({a}\:\right)}{{c}−{b}}\:=\:\frac{{ln}\left({c}\right)}{{b}−{a}} \\ $$$$\left({b}−{a}\right)\:\mathrm{ln}\:{a}\:=\:\left({c}−{b}\right)\:\mathrm{ln}\:{c} \\ $$$$\mathrm{ln}\:{a}^{{b}−{a}} =\mathrm{ln}\:{c}^{{c}−{b}} \\ $$$$\:\:{a}^{{b}−{a}} =\:{c}^{{c}−{b}} \\ $$$$\frac{{a}^{{b}} }{{a}^{{a}} }=\frac{{c}^{{c}} }{{c}^{{b}} } \\ $$$${a}^{{a}} {c}^{{c}} =\left({ac}\right)^{{b}} ……………..\left({iii}\right) \\ $$$$\left({i}\right)×\left({ii}\right)×\left({iii}\right): \\ $$$$\left({a}^{{a}} {b}^{{b}} \right)\left({b}^{{b}} {c}^{{c}} \right)\left({a}^{{a}} {c}^{{c}} \right)=\left({ab}\right)^{{c}} \left({bc}\right)^{{a}} \left({ac}\right)^{{b}} \\ $$$$\left({a}^{{a}} {b}^{{b}} {c}^{{c}} \right)^{\mathrm{2}} ={a}^{{b}+{c}} {b}^{{a}+{c}} {c}^{{a}+{b}} \\ $$$${a}^{{a}} {b}^{{b}} {c}^{{c}} ={a}^{\frac{{b}+{c}}{\mathrm{2}}} {b}^{\frac{{a}+{c}}{\mathrm{2}}} {c}^{\frac{{a}+{b}}{\mathrm{2}}} \\ $$$$\mathcal{N}{ot}\:{complete}… \\ $$
Answered by som(math1967) last updated on 16/Jul/22
$$\:\frac{{ln}\left({a}\right)}{{c}−{b}}=\frac{{ln}\left({b}\right)}{{a}−{c}}=\frac{{ln}\left({c}\right)}{{b}−{a}}={k}\:\left({let}\right) \\ $$$${ln}\left({a}\right)={k}\left({c}−{b}\right) \\ $$$$\Rightarrow{a}={e}^{{k}\left({c}−{b}\right)} \Rightarrow{a}^{{a}} ={e}^{{k}\left({ac}−{ab}\right)} \\ $$$${ln}\left({b}\right)={k}\left({a}−{c}\right)\Rightarrow{b}^{{b}} ={e}^{{k}\left({ba}−{bc}\right)} \\ $$$${ln}\left({c}\right)={k}\left({b}−{a}\right)\Rightarrow{c}^{{c}} ={e}^{{k}\left({cb}−{ca}\right)} \\ $$$$\therefore{a}^{{a}} .{b}^{{b}} .{c}^{{c}} \\ $$$$={e}^{{k}\left({ac}−{ab}\right)+{k}\left({ba}−{bc}\right)+{k}\left({cb}−{ca}\right)} \\ $$$$={e}^{\mathrm{0}} =\mathrm{1} \\ $$