Menu Close

q-n-n-0-cos-x-2-n-i-study-the-variation-of-q-n-ii-show-that-cosx-sin2x-2sinx-x-0-pi-2-iii-deduce-that-q-n-1-2-n-1-sin2x-sin-x-2-n-iv-lim-n-q-n-v-s




Question Number 147528 by alcohol last updated on 21/Jul/21
q_n =Π_(n=0) ^∞ cos((x/2^n ))  i) study the variation of q_n   ii)   show that cosx=((sin2x)/(2sinx)) , ∀x∈[0,(π/2)]  iii)  deduce that q_n =(1/2^(n+1) )×((sin2x)/(sin((x/2^n ))))  iv)lim_(n→∞) q_n =?  v)   solve cos((x/2))≥−(1/2)
qn=n=0cos(x2n)i)studythevariationofqnii)showthatcosx=sin2x2sinx,x[0,π2]iii)deducethatqn=12n+1×sin2xsin(x2n)iv)limnqn=?v)solvecos(x2)12
Commented by Olaf_Thorendsen last updated on 21/Jul/21
use sin2θ_n  = 2sinθ_n cosθ_n   ⇒ cosθ_n  = ((sin2θ_n )/(2sinθ_n )) with θ_n  = (x/2^n )  cos(x/2^n ) = ((sin(x/2^(n−1) ))/(2sin(x/2^n )))  ...telescopic product
usesin2θn=2sinθncosθncosθn=sin2θn2sinθnwithθn=x2ncosx2n=sinx2n12sinx2ntelescopicproduct
Commented by alcohol last updated on 21/Jul/21
thanks  but i dont understand
thanksbutidontunderstand
Commented by puissant last updated on 21/Jul/21
U_n =Π_(k=0) ^n cos((x/2^k ))...
Un=nk=0cos(x2k)

Leave a Reply

Your email address will not be published. Required fields are marked *