Menu Close

Q-p-q-r-are-roots-of-x-3-7x-2-4-x-x-2-find-the-value-of-K-1-qr-1-3-1-pr-1-3-1-pq-1-3-




Question Number 174127 by mnjuly1970 last updated on 26/Jul/22
     Q:     p , q , r    are  roots of       x^( 3)  −7x^( 2) =(4−x)(x+2)       find  the value of :     K = (1/( ((qr))^(1/3) ))  + (1/( ((pr))^(1/3) ))  + (1/( ((pq))^(1/3) )) = ?
Q:p,q,rarerootsofx37x2=(4x)(x+2)findthevalueof:K=1qr3+1pr3+1pq3=?
Answered by Rasheed.Sindhi last updated on 26/Jul/22
x^3 +5x^2 =8x−15−x^2   x^3 +6x^2 −8x+15=0  p+q+r=−6 , pq+qr+rp=−8 , pqr=−15   K = (((p)^(1/3)  +(q)^(1/3)  +(r)^(1/3)   )/( ((pqr))^(1/3)  )) ⇒(p)^(1/3)  +(q)^(1/3)  +(r)^(1/3)  = ((pqr))^(1/3)  K     K^3  = ((((p)^(1/3)  +(q)^(1/3)  +(r)^(1/3)   )/( ((pqr))^(1/3) )))^3     (a+b+c)^3 =a^3 +b^3 +c^3 +3(ab+bc+ca)(a+b+c)−3abc  =((p+q+r+3(((pq))^(1/3)  +((qr))^(1/3)  +((rp))^(1/3)  )((p)^(1/3)  +(q)^(1/3)  +(r)^(1/3)  )−3((pqr))^(1/3)  )/(pqr))  =((p+q+r+3(((pq))^(1/3)  +((qr))^(1/3)  +((rp))^(1/3)  )(((pqr))^(1/3)  K )−3((pqr))^(1/3)  )/(pqr))  =((p+q+r+3(((((pqr))^(1/3)  )/( (r)^(1/3) ))+((((pqr))^(1/3)  )/( (p)^(1/3) )) +((((pqr))^(1/3)  )/( (q)^(1/3) )) )(((pqr))^(1/3)  K )−3((pqr))^(1/3)  )/(pqr))  =((p+q+r+3(((pqr))^(1/3)  )^2 (((1 )/( (r)^(1/3) ))+((1 )/( (p)^(1/3) )) +((1 )/( (q)^(1/3) )) )^★ (K )−3((pqr))^(1/3)  )/(pqr))  K^3 (pqr)=p+q+r+3(((pqr))^(1/3)  )^2 (A )(K )−3((pqr))^(1/3)     determinant (((K^3 (pqr)=p+q+r+3(((pqr))^(1/3)  )^2 (A )(K )−3((pqr))^(1/3)  )))...(I)  ^★ A=((1 )/( (r)^(1/3) ))+((1 )/( (p)^(1/3) )) +((1 )/( (q)^(1/3) ))  A^3 =(1/r)+(1/p)+(1/q)+3((1/( ((pq))^(1/3) ))+(1/( ((qr))^(1/3) ))+(1/( ((rp))^(1/3) )))(a)−(3/( ((pqr))^(1/3) ))  A^3 =(1/r)+(1/p)+(1/q)+3(K)(A)−(3/( ((pqr))^(1/3) ))  A^3 =((pq+qr+rp)/(pqr))+3(K)(A)−(3/( ((pqr))^(1/3) ))     =((−8)/(−15))+3KA−(3/( ((−15))^(1/3) ))  K=((A^3 −(8/(15))+(3/( ((−15))^(1/3) )))/(3A))   determinant (((K=((A^3 −(8/(15))+(3/( ((−15))^(1/3) )))/(3A)))))....(II)  Solving (I) & (II) (eqns in boxes)   simultaneously we can determine K     Too complicated....
x3+5x2=8x15x2x3+6x28x+15=0p+q+r=6,pq+qr+rp=8,pqr=15K=p3+q3+r3pqr3p3+q3+r3=pqr3KK3=(p3+q3+r3pqr3)3(a+b+c)3=a3+b3+c3+3(ab+bc+ca)(a+b+c)3abc=p+q+r+3(pq3+qr3+rp3)(p3+q3+r3)3pqr3pqr=p+q+r+3(pq3+qr3+rp3)(pqr3K)3pqr3pqr=p+q+r+3(pqr3r3+pqr3p3+pqr3q3)(pqr3K)3pqr3pqr=p+q+r+3(pqr3)2(1r3+1p3+1q3)(K)3pqr3pqrK3(pqr)=p+q+r+3(pqr3)2(A)(K)3pqr3K3(pqr)=p+q+r+3(pqr3)2(A)(K)3pqr3(I)A=1r3+1p3+1q3A3=1r+1p+1q+3(1pq3+1qr3+1rp3)(a)3pqr3A3=1r+1p+1q+3(K)(A)3pqr3A3=pq+qr+rppqr+3(K)(A)3pqr3=815+3KA3153K=A3815+31533AK=A3815+31533A.(II)Solving(I)&(II)(eqnsinboxes)simultaneouslywecandetermineKToocomplicated.

Leave a Reply

Your email address will not be published. Required fields are marked *