Question Number 174127 by mnjuly1970 last updated on 26/Jul/22
$$ \\ $$$$\:\:\:{Q}:\:\:\:\:\:{p}\:,\:{q}\:,\:{r}\:\:\:\:{are}\:\:{roots}\:{of} \\ $$$$\:\:\:\:\:{x}^{\:\mathrm{3}} \:−\mathrm{7}{x}^{\:\mathrm{2}} =\left(\mathrm{4}−{x}\right)\left({x}+\mathrm{2}\right) \\ $$$$\:\:\:\:\:{find}\:\:{the}\:{value}\:{of}\:: \\ $$$$\:\:\:\mathrm{K}\:=\:\frac{\mathrm{1}}{\:\sqrt[{\mathrm{3}}]{{qr}}}\:\:+\:\frac{\mathrm{1}}{\:\sqrt[{\mathrm{3}}]{{pr}}}\:\:+\:\frac{\mathrm{1}}{\:\sqrt[{\mathrm{3}}]{{pq}}}\:=\:? \\ $$$$ \\ $$
Answered by Rasheed.Sindhi last updated on 26/Jul/22
$${x}^{\mathrm{3}} +\mathrm{5}{x}^{\mathrm{2}} =\mathrm{8}{x}−\mathrm{15}−{x}^{\mathrm{2}} \\ $$$${x}^{\mathrm{3}} +\mathrm{6}{x}^{\mathrm{2}} −\mathrm{8}{x}+\mathrm{15}=\mathrm{0} \\ $$$${p}+{q}+{r}=−\mathrm{6}\:,\:{pq}+{qr}+{rp}=−\mathrm{8}\:,\:{pqr}=−\mathrm{15} \\ $$$$\:\mathrm{K}\:=\:\frac{\sqrt[{\mathrm{3}}]{{p}}\:+\sqrt[{\mathrm{3}}]{{q}}\:+\sqrt[{\mathrm{3}}]{{r}}\:\:}{\:\sqrt[{\mathrm{3}}]{{pqr}}\:}\:\Rightarrow\sqrt[{\mathrm{3}}]{{p}}\:+\sqrt[{\mathrm{3}}]{{q}}\:+\sqrt[{\mathrm{3}}]{{r}}\:=\:\sqrt[{\mathrm{3}}]{{pqr}}\:{K} \\ $$$$ \\ $$$$\:\mathrm{K}^{\mathrm{3}} \:=\:\left(\frac{\sqrt[{\mathrm{3}}]{{p}}\:+\sqrt[{\mathrm{3}}]{{q}}\:+\sqrt[{\mathrm{3}}]{{r}}\:\:}{\:\sqrt[{\mathrm{3}}]{{pqr}}}\right)^{\mathrm{3}} \:\: \\ $$$$\left({a}+{b}+{c}\right)^{\mathrm{3}} ={a}^{\mathrm{3}} +{b}^{\mathrm{3}} +{c}^{\mathrm{3}} +\mathrm{3}\left({ab}+{bc}+{ca}\right)\left({a}+{b}+{c}\right)−\mathrm{3}{abc} \\ $$$$=\frac{{p}+{q}+{r}+\mathrm{3}\left(\sqrt[{\mathrm{3}}]{{pq}}\:+\sqrt[{\mathrm{3}}]{{qr}}\:+\sqrt[{\mathrm{3}}]{{rp}}\:\right)\left(\sqrt[{\mathrm{3}}]{{p}}\:+\sqrt[{\mathrm{3}}]{{q}}\:+\sqrt[{\mathrm{3}}]{{r}}\:\right)−\mathrm{3}\sqrt[{\mathrm{3}}]{{pqr}}\:}{{pqr}} \\ $$$$=\frac{{p}+{q}+{r}+\mathrm{3}\left(\sqrt[{\mathrm{3}}]{{pq}}\:+\sqrt[{\mathrm{3}}]{{qr}}\:+\sqrt[{\mathrm{3}}]{{rp}}\:\right)\left(\sqrt[{\mathrm{3}}]{{pqr}}\:{K}\:\right)−\mathrm{3}\sqrt[{\mathrm{3}}]{{pqr}}\:}{{pqr}} \\ $$$$=\frac{{p}+{q}+{r}+\mathrm{3}\left(\frac{\sqrt[{\mathrm{3}}]{{pqr}}\:}{\:\sqrt[{\mathrm{3}}]{{r}}}+\frac{\sqrt[{\mathrm{3}}]{{pqr}}\:}{\:\sqrt[{\mathrm{3}}]{{p}}}\:+\frac{\sqrt[{\mathrm{3}}]{{pqr}}\:}{\:\sqrt[{\mathrm{3}}]{{q}}}\:\right)\left(\sqrt[{\mathrm{3}}]{{pqr}}\:{K}\:\right)−\mathrm{3}\sqrt[{\mathrm{3}}]{{pqr}}\:}{{pqr}} \\ $$$$=\frac{{p}+{q}+{r}+\mathrm{3}\left(\sqrt[{\mathrm{3}}]{{pqr}}\:\right)^{\mathrm{2}} \left(\frac{\mathrm{1}\:}{\:\sqrt[{\mathrm{3}}]{{r}}}+\frac{\mathrm{1}\:}{\:\sqrt[{\mathrm{3}}]{{p}}}\:+\frac{\mathrm{1}\:}{\:\sqrt[{\mathrm{3}}]{{q}}}\:\right)^{\bigstar} \left({K}\:\right)−\mathrm{3}\sqrt[{\mathrm{3}}]{{pqr}}\:}{{pqr}} \\ $$$${K}^{\mathrm{3}} \left({pqr}\right)={p}+{q}+{r}+\mathrm{3}\left(\sqrt[{\mathrm{3}}]{{pqr}}\:\right)^{\mathrm{2}} \left({A}\:\right)\left({K}\:\right)−\mathrm{3}\sqrt[{\mathrm{3}}]{{pqr}}\: \\ $$$$\begin{array}{|c|}{{K}^{\mathrm{3}} \left({pqr}\right)={p}+{q}+{r}+\mathrm{3}\left(\sqrt[{\mathrm{3}}]{{pqr}}\:\right)^{\mathrm{2}} \left({A}\:\right)\left({K}\:\right)−\mathrm{3}\sqrt[{\mathrm{3}}]{{pqr}}\:}\\\hline\end{array}…\left(\mathrm{I}\right) \\ $$$$\:^{\bigstar} {A}=\frac{\mathrm{1}\:}{\:\sqrt[{\mathrm{3}}]{{r}}}+\frac{\mathrm{1}\:}{\:\sqrt[{\mathrm{3}}]{{p}}}\:+\frac{\mathrm{1}\:}{\:\sqrt[{\mathrm{3}}]{{q}}} \\ $$$${A}^{\mathrm{3}} =\frac{\mathrm{1}}{{r}}+\frac{\mathrm{1}}{{p}}+\frac{\mathrm{1}}{{q}}+\mathrm{3}\left(\frac{\mathrm{1}}{\:\sqrt[{\mathrm{3}}]{{pq}}}+\frac{\mathrm{1}}{\:\sqrt[{\mathrm{3}}]{{qr}}}+\frac{\mathrm{1}}{\:\sqrt[{\mathrm{3}}]{{rp}}}\right)\left({a}\right)−\frac{\mathrm{3}}{\:\sqrt[{\mathrm{3}}]{{pqr}}} \\ $$$${A}^{\mathrm{3}} =\frac{\mathrm{1}}{{r}}+\frac{\mathrm{1}}{{p}}+\frac{\mathrm{1}}{{q}}+\mathrm{3}\left({K}\right)\left({A}\right)−\frac{\mathrm{3}}{\:\sqrt[{\mathrm{3}}]{{pqr}}} \\ $$$${A}^{\mathrm{3}} =\frac{{pq}+{qr}+{rp}}{{pqr}}+\mathrm{3}\left({K}\right)\left({A}\right)−\frac{\mathrm{3}}{\:\sqrt[{\mathrm{3}}]{{pqr}}} \\ $$$$\:\:\:=\frac{−\mathrm{8}}{−\mathrm{15}}+\mathrm{3}{KA}−\frac{\mathrm{3}}{\:\sqrt[{\mathrm{3}}]{−\mathrm{15}}} \\ $$$${K}=\frac{{A}^{\mathrm{3}} −\frac{\mathrm{8}}{\mathrm{15}}+\frac{\mathrm{3}}{\:\sqrt[{\mathrm{3}}]{−\mathrm{15}}}}{\mathrm{3}{A}} \\ $$$$\begin{array}{|c|}{{K}=\frac{{A}^{\mathrm{3}} −\frac{\mathrm{8}}{\mathrm{15}}+\frac{\mathrm{3}}{\:\sqrt[{\mathrm{3}}]{−\mathrm{15}}}}{\mathrm{3}{A}}}\\\hline\end{array}….\left(\mathrm{II}\right) \\ $$$${Solving}\:\left(\mathrm{I}\right)\:\&\:\left(\mathrm{II}\right)\:\left({eqns}\:{in}\:{boxes}\right) \\ $$$$\:{simultaneously}\:{we}\:{can}\:{determine}\:{K} \\ $$$$\:\:\:{Too}\:{complicated}…. \\ $$