Q-p-q-r-are-roots-of-x-3-7x-2-4-x-x-2-find-the-value-of-K-1-qr-1-3-1-pr-1-3-1-pq-1-3- Tinku Tara June 4, 2023 Algebra 0 Comments FacebookTweetPin Question Number 174127 by mnjuly1970 last updated on 26/Jul/22 Q:p,q,rarerootsofx3−7x2=(4−x)(x+2)findthevalueof:K=1qr3+1pr3+1pq3=? Answered by Rasheed.Sindhi last updated on 26/Jul/22 x3+5x2=8x−15−x2x3+6x2−8x+15=0p+q+r=−6,pq+qr+rp=−8,pqr=−15K=p3+q3+r3pqr3⇒p3+q3+r3=pqr3KK3=(p3+q3+r3pqr3)3(a+b+c)3=a3+b3+c3+3(ab+bc+ca)(a+b+c)−3abc=p+q+r+3(pq3+qr3+rp3)(p3+q3+r3)−3pqr3pqr=p+q+r+3(pq3+qr3+rp3)(pqr3K)−3pqr3pqr=p+q+r+3(pqr3r3+pqr3p3+pqr3q3)(pqr3K)−3pqr3pqr=p+q+r+3(pqr3)2(1r3+1p3+1q3)★(K)−3pqr3pqrK3(pqr)=p+q+r+3(pqr3)2(A)(K)−3pqr3K3(pqr)=p+q+r+3(pqr3)2(A)(K)−3pqr3…(I)★A=1r3+1p3+1q3A3=1r+1p+1q+3(1pq3+1qr3+1rp3)(a)−3pqr3A3=1r+1p+1q+3(K)(A)−3pqr3A3=pq+qr+rppqr+3(K)(A)−3pqr3=−8−15+3KA−3−153K=A3−815+3−1533AK=A3−815+3−1533A….(II)Solving(I)&(II)(eqnsinboxes)simultaneouslywecandetermineKToocomplicated…. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-108588Next Next post: Question-108593 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.