Menu Close

Q-Prove-by-mathematical-induction-that-r-1-n-4r-5-2n-2-7n-




Question Number 93474 by Rio Michael last updated on 13/May/20
Q. Prove by mathematical induction that        Σ_(r=1) ^n  (4r + 5) = 2n^2  + 7n
Q.Provebymathematicalinductionthatnr=1(4r+5)=2n2+7n
Answered by eswar150933 last updated on 13/May/20
Answered by allizzwell23 last updated on 13/May/20
  P_1  : 4(1) + 5 = 9 = 2(1)^2  + 7(1)      (true)    Let n = k       Σ_(r=1) ^n  (4r + 5) = 2k^2  + 7k     Assume n = k + 1 is true       Σ_(r=1) ^n  (4r + 5) + (4(r+1) + 5)                            = 2(k+1)^2  + 7(k+1)     To prove the truth of n = k + 1       Σ_(r=1) ^n  (4r + 5) + (4(r+1) + 5)                            = 2k^2  + 7k + (4(k+1) + 5)                           = 2k^2  + 7k + 4k + 4 + 5                           = 2k^2  + 4k + 2 + 7k + 7                           = 2(k^2  + 2k + 1) + 7(k + 1)                           = 2(k+1)^2  + 7(k+1)   DONE !  130520
\boldsymbolP1:4(1)+5=9=2(1)2+7(1)(\boldsymboltrue)\boldsymbolLet\boldsymboln=\boldsymbolknr=1(4r+5)=2k2+7k\boldsymbolAssume\boldsymboln=\boldsymbolk+1\boldsymbolis\boldsymboltruenr=1(4r+5)+(4(r+1)+5)=2(k+1)2+7(k+1)\boldsymbolTo\boldsymbolprove\boldsymbolthe\boldsymboltruth\boldsymbolof\boldsymboln=\boldsymbolk+1nr=1(4r+5)+(4(r+1)+5)=2k2+7k+(4(k+1)+5)=2k2+7k+4k+4+5=2k2+4k+2+7k+7=2(k2+2k+1)+7(k+1)=2(k+1)2+7(k+1)\boldsymbolDONE!130520
Commented by Rio Michael last updated on 13/May/20
thanks y′all
thanksyallthanksyall
Commented by allizzwell23 last updated on 13/May/20
you′re welcom
yourewelcomyourewelcom

Leave a Reply

Your email address will not be published. Required fields are marked *