Menu Close

Q-prove-that-the-following-equation-has-no-solution-x-x-x-x-1-




Question Number 175653 by mnjuly1970 last updated on 04/Sep/22
     Q:  prove that the following       equation has no solution.       (√(x +⌊ x ⌋)) + (√(x −(√x) )) = 1
Q:provethatthefollowingequationhasnosolution.x+x+xx=1
Answered by mahdipoor last updated on 04/Sep/22
f(x) = (√(x−(√x) ))+ (√(x+[x]))  D_f =∀x≥1  for I_n =[n,n+1)   n≥1  f_n (x)=(√(x−(√x)))+(√(x+n))  D_x (f_n (x))=((1−(1/(2(√x))))/( 2(√(x−(√x)))))+(1/( 2(√(x+n)))) >0  f is incrise function in I_n ⇒  R_f   in I_n =[f_n (n),f_n (n+1))  ⇒⇒  R_f   in D_f =I_1 ∩I_2 ∩... =  [(√2),(√3)+(√(2−(√2))))∩[(√4)+(√(2−(√2))),(√5)+(√(3−(√3))))∩...  ⇒(√2)≤R_f      ⇒f(x)≠1 for ∀x∈D_f
f(x)=xx+x+[x]Df=x1forIn=[n,n+1)n1fn(x)=xx+x+nDx(fn(x))=112x2xx+12x+n>0fisincrisefunctioninInRfinIn=[fn(n),fn(n+1))⇒⇒RfinDf=I1I2=[2,3+22)[4+22,5+33)2Rff(x)1forxDf
Commented by mnjuly1970 last updated on 04/Sep/22
thanks alot sir mahdipoor
thanksalotsirmahdipoor
Answered by mr W last updated on 04/Sep/22
x≥0  x≥(√x) ⇒x≥1⇒⌊x⌋≥1  x+⌊x⌋≥2  (√(x+⌊x⌋))≥(√2)  (√(x+⌊x⌋))+(√(x−(√x)))≥(√2)>1  (√(x+⌊x⌋))+(√(x−(√x)))=1 can never be true.  i.e. (√(x+⌊x⌋))+(√(x−(√x)))=1 has no solution.
x0xxx1x1x+x2x+x2x+x+xx2>1x+x+xx=1canneverbetrue.i.e.x+x+xx=1hasnosolution.
Commented by mnjuly1970 last updated on 04/Sep/22
bravo sir W
bravosirW

Leave a Reply

Your email address will not be published. Required fields are marked *