Menu Close

Q-Show-that-i-1-2n-1-i-1-1-i-i-1-n-1-i-n-




Question Number 191821 by mehdee42 last updated on 01/May/23
 Q ▶ Show that:  Σ_(i=1) ^(2n) (−1)^(i+1) (1/i)=Σ_(i=1) ^n  (1/(i+n))
$$\:{Q}\:\blacktriangleright\:{Show}\:{that}: \\ $$$$\underset{{i}=\mathrm{1}} {\overset{\mathrm{2}{n}} {\sum}}\left(−\mathrm{1}\right)^{{i}+\mathrm{1}} \frac{\mathrm{1}}{{i}}=\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\:\frac{\mathrm{1}}{{i}+{n}} \\ $$
Answered by mehdee42 last updated on 03/May/23
Answer the question  Σ_(i=1) ^(2n) (−1)^(i+1) (1/i)=1−(1/2)+(1/3)−...+(1/(2n−1))−(1/(2n))=  1+(1/2)+(1/3)+(1/4)+...+(1/(2n−1))+(1/(2n))−2((1/2)+(1/4)+...+(1/(2n)))=  1+(1/2)+(1/3)+(1/4)+...+(1/n)+(1/(n+1))+...+(1/(2n))−1−(1/2)−(1/3)−...−(1/n)=(1/(n+1))+(1/(n+2))+...+(1/(2n)) ✓
$${Answer}\:{the}\:{question} \\ $$$$\underset{{i}=\mathrm{1}} {\overset{\mathrm{2}{n}} {\sum}}\left(−\mathrm{1}\right)^{{i}+\mathrm{1}} \frac{\mathrm{1}}{{i}}=\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}−…+\frac{\mathrm{1}}{\mathrm{2}{n}−\mathrm{1}}−\frac{\mathrm{1}}{\mathrm{2}{n}}= \\ $$$$\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{4}}+…+\frac{\mathrm{1}}{\mathrm{2}{n}−\mathrm{1}}+\frac{\mathrm{1}}{\mathrm{2}{n}}−\mathrm{2}\left(\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{4}}+…+\frac{\mathrm{1}}{\mathrm{2}{n}}\right)= \\ $$$$\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{4}}+…+\frac{\mathrm{1}}{{n}}+\frac{\mathrm{1}}{{n}+\mathrm{1}}+…+\frac{\mathrm{1}}{\mathrm{2}{n}}−\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{3}}−…−\frac{\mathrm{1}}{{n}}=\frac{\mathrm{1}}{{n}+\mathrm{1}}+\frac{\mathrm{1}}{{n}+\mathrm{2}}+…+\frac{\mathrm{1}}{\mathrm{2}{n}}\:\checkmark \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *