Question Number 191525 by mehdee42 last updated on 25/Apr/23
$${Q}\::\:{Show}\:{that}\:{the}\:{numbers}\:\sqrt{\mathrm{3}\:}\:,\:\mathrm{2}\:\&\:\sqrt{\mathrm{8}}\:{cannot}\:{be}\:{terms}\:{of}\:{an}\:{arithmetic}\:{sequence}. \\ $$
Answered by mr W last updated on 26/Apr/23
$$\sqrt{\mathrm{3}}<\mathrm{2}<\sqrt{\mathrm{8}} \\ $$$${assume}\:{they}\:{are}\:{terms}\:{of}\:{an}\:{A}.{P}., \\ $$$${then}\:{we}\:{have} \\ $$$$\mathrm{2}=\sqrt{\mathrm{3}}+{md} \\ $$$$\sqrt{\mathrm{8}}=\mathrm{2}+{nd} \\ $$$${with}\:{m},{n}\:\in{N},\:{d}\:\in{R}. \\ $$$${d}=\frac{\mathrm{2}−\sqrt{\mathrm{3}}}{{m}}=\frac{\sqrt{\mathrm{8}}−\mathrm{2}}{{n}} \\ $$$$\Rightarrow\mathrm{2}\left({m}+{n}\right)={m}\sqrt{\mathrm{8}}+{n}\sqrt{\mathrm{3}} \\ $$$$\Rightarrow\mathrm{4}\left({m}+{n}\right)^{\mathrm{2}} =\mathrm{8}{m}^{\mathrm{2}} +\mathrm{3}{n}^{\mathrm{2}} +\mathrm{4}{mn}\sqrt{\mathrm{6}} \\ $$$$\Rightarrow\sqrt{\mathrm{6}}=\frac{\mathrm{4}\left({m}+{n}\right)^{\mathrm{2}} −\mathrm{8}{m}^{\mathrm{2}} −\mathrm{3}{n}^{\mathrm{2}} }{\mathrm{4}{mn}}=\frac{{integer}}{{integer}} \\ $$$${i}.{e}.\:\sqrt{\mathrm{6}}\:{is}\:{rational},\:{but}\:\sqrt{\mathrm{6}}\:{is}\:{in}\:{fact}\:{not} \\ $$$${rational}.\: \\ $$$${contradiction}! \\ $$$$\Rightarrow\sqrt{\mathrm{3}},\:\mathrm{2},\:\sqrt{\mathrm{8}}\:{can}\:{not}\:{be}\:{terms}\:{of}\:{an}\:{A}.{P}.! \\ $$
Commented by mehdee42 last updated on 27/Apr/23
$${beravo}\:{sir}\:{W} \\ $$$${the}\:{result}\:{of}\:\:{contradiction}\:{can}\:{also}\:{be}\:{obtained}\:{frome}\:{the}\:{relation}\:\:\frac{\mathrm{2}−\sqrt{\mathrm{3}}}{{m}}=\frac{\sqrt{\mathrm{8}}−\mathrm{2}}{{n}}\Rightarrow\frac{\mathrm{2}−\sqrt{\mathrm{3}}}{\:\sqrt{\mathrm{8}}−\mathrm{2}}\:=\frac{{m}}{{n}}\:, \\ $$$${because}\:{we}\:{have}\:{rational}\:{number}\:{on}\:{one}\:{side}\:{anf}\:{dumb}\:{nimber}\:{on}\:{thr}\:{other}\:{side} \\ $$
Commented by mehdee42 last updated on 27/Apr/23
$${anyway}\:,\:{your}\:{proof}\:\:{for}\:{this}\:{contradiction}\:{is}\:{appriciated} \\ $$
Commented by mr W last updated on 27/Apr/23
$${but}\:{we}\:{can}\:{not}\:{generally}\:{say}\:{that} \\ $$$$\frac{{irrational}\:{number}}{{irrational}\:{number}}\:{is}\:{also}\:{irrational}. \\ $$
Commented by mehdee42 last updated on 28/Apr/23
$${exactly} \\ $$