Menu Close

Q-Show-that-the-numbers-3-2-amp-8-cannot-be-terms-of-an-arithmetic-sequence-




Question Number 191525 by mehdee42 last updated on 25/Apr/23
Q : Show that the numbers (√(3 )) , 2 & (√8) cannot be terms of an arithmetic sequence.
$${Q}\::\:{Show}\:{that}\:{the}\:{numbers}\:\sqrt{\mathrm{3}\:}\:,\:\mathrm{2}\:\&\:\sqrt{\mathrm{8}}\:{cannot}\:{be}\:{terms}\:{of}\:{an}\:{arithmetic}\:{sequence}. \\ $$
Answered by mr W last updated on 26/Apr/23
(√3)<2<(√8)  assume they are terms of an A.P.,  then we have  2=(√3)+md  (√8)=2+nd  with m,n ∈N, d ∈R.  d=((2−(√3))/m)=(((√8)−2)/n)  ⇒2(m+n)=m(√8)+n(√3)  ⇒4(m+n)^2 =8m^2 +3n^2 +4mn(√6)  ⇒(√6)=((4(m+n)^2 −8m^2 −3n^2 )/(4mn))=((integer)/(integer))  i.e. (√6) is rational, but (√6) is in fact not  rational.   contradiction!  ⇒(√3), 2, (√8) can not be terms of an A.P.!
$$\sqrt{\mathrm{3}}<\mathrm{2}<\sqrt{\mathrm{8}} \\ $$$${assume}\:{they}\:{are}\:{terms}\:{of}\:{an}\:{A}.{P}., \\ $$$${then}\:{we}\:{have} \\ $$$$\mathrm{2}=\sqrt{\mathrm{3}}+{md} \\ $$$$\sqrt{\mathrm{8}}=\mathrm{2}+{nd} \\ $$$${with}\:{m},{n}\:\in{N},\:{d}\:\in{R}. \\ $$$${d}=\frac{\mathrm{2}−\sqrt{\mathrm{3}}}{{m}}=\frac{\sqrt{\mathrm{8}}−\mathrm{2}}{{n}} \\ $$$$\Rightarrow\mathrm{2}\left({m}+{n}\right)={m}\sqrt{\mathrm{8}}+{n}\sqrt{\mathrm{3}} \\ $$$$\Rightarrow\mathrm{4}\left({m}+{n}\right)^{\mathrm{2}} =\mathrm{8}{m}^{\mathrm{2}} +\mathrm{3}{n}^{\mathrm{2}} +\mathrm{4}{mn}\sqrt{\mathrm{6}} \\ $$$$\Rightarrow\sqrt{\mathrm{6}}=\frac{\mathrm{4}\left({m}+{n}\right)^{\mathrm{2}} −\mathrm{8}{m}^{\mathrm{2}} −\mathrm{3}{n}^{\mathrm{2}} }{\mathrm{4}{mn}}=\frac{{integer}}{{integer}} \\ $$$${i}.{e}.\:\sqrt{\mathrm{6}}\:{is}\:{rational},\:{but}\:\sqrt{\mathrm{6}}\:{is}\:{in}\:{fact}\:{not} \\ $$$${rational}.\: \\ $$$${contradiction}! \\ $$$$\Rightarrow\sqrt{\mathrm{3}},\:\mathrm{2},\:\sqrt{\mathrm{8}}\:{can}\:{not}\:{be}\:{terms}\:{of}\:{an}\:{A}.{P}.! \\ $$
Commented by mehdee42 last updated on 27/Apr/23
beravo sir W  the result of  contradiction can also be obtained frome the relation  ((2−(√3))/m)=(((√8)−2)/n)⇒((2−(√3))/( (√8)−2)) =(m/n) ,  because we have rational number on one side anf dumb nimber on thr other side
$${beravo}\:{sir}\:{W} \\ $$$${the}\:{result}\:{of}\:\:{contradiction}\:{can}\:{also}\:{be}\:{obtained}\:{frome}\:{the}\:{relation}\:\:\frac{\mathrm{2}−\sqrt{\mathrm{3}}}{{m}}=\frac{\sqrt{\mathrm{8}}−\mathrm{2}}{{n}}\Rightarrow\frac{\mathrm{2}−\sqrt{\mathrm{3}}}{\:\sqrt{\mathrm{8}}−\mathrm{2}}\:=\frac{{m}}{{n}}\:, \\ $$$${because}\:{we}\:{have}\:{rational}\:{number}\:{on}\:{one}\:{side}\:{anf}\:{dumb}\:{nimber}\:{on}\:{thr}\:{other}\:{side} \\ $$
Commented by mehdee42 last updated on 27/Apr/23
anyway , your proof  for this contradiction is appriciated
$${anyway}\:,\:{your}\:{proof}\:\:{for}\:{this}\:{contradiction}\:{is}\:{appriciated} \\ $$
Commented by mr W last updated on 27/Apr/23
but we can not generally say that  ((irrational number)/(irrational number)) is also irrational.
$${but}\:{we}\:{can}\:{not}\:{generally}\:{say}\:{that} \\ $$$$\frac{{irrational}\:{number}}{{irrational}\:{number}}\:{is}\:{also}\:{irrational}. \\ $$
Commented by mehdee42 last updated on 28/Apr/23
exactly
$${exactly} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *