Menu Close

Q-solve-if-t-2-n-2-cos-2-x-m-2-sin-2-x-then-show-that-t-d-2-t-dx-2-nm-2-t-3-




Question Number 79513 by M±th+et£s last updated on 25/Jan/20
Q.solve  if t^2 =n^2 cos^2 (x)+m^2 sin^2 (x)    then show that:  t+(d^2 t/dx^2 )=(((nm)^2 )/t^3 )
$${Q}.{solve} \\ $$$${if}\:{t}^{\mathrm{2}} ={n}^{\mathrm{2}} {cos}^{\mathrm{2}} \left({x}\right)+{m}^{\mathrm{2}} {sin}^{\mathrm{2}} \left({x}\right) \\ $$$$ \\ $$$${then}\:{show}\:{that}: \\ $$$${t}+\frac{{d}^{\mathrm{2}} {t}}{{dx}^{\mathrm{2}} }=\frac{\left({nm}\right)^{\mathrm{2}} }{{t}^{\mathrm{3}} } \\ $$$$ \\ $$
Commented by john santu last updated on 26/Jan/20
t^2 = n^2 (1−sin^2 x)+m^2 sin^2 x  t^2 =n^2 +(m^2 −n^2 )sin^2 x  2t(dt/dx)=(m^2 −n^2 )sin (2x)  (dt/dx)=(((m^2 −n^2 )sin (2x))/(2t))  2((dt/dx))^2 +2t(d^2 t/dx^2 )=2(m^2 −n^2 )cos (2x)  (((m^2 −n^2 )^2 sin^2 (2x))/(4t^2 ))+t((d^2 t/dx^2 ))=(m^2 −n^2 )cos (2x)  continue...
$${t}^{\mathrm{2}} =\:{n}^{\mathrm{2}} \left(\mathrm{1}−\mathrm{sin}\:^{\mathrm{2}} {x}\right)+{m}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} {x} \\ $$$${t}^{\mathrm{2}} ={n}^{\mathrm{2}} +\left({m}^{\mathrm{2}} −{n}^{\mathrm{2}} \right)\mathrm{sin}\:^{\mathrm{2}} {x} \\ $$$$\mathrm{2}{t}\frac{{dt}}{{dx}}=\left({m}^{\mathrm{2}} −{n}^{\mathrm{2}} \right)\mathrm{sin}\:\left(\mathrm{2}{x}\right) \\ $$$$\frac{{dt}}{{dx}}=\frac{\left({m}^{\mathrm{2}} −{n}^{\mathrm{2}} \right)\mathrm{sin}\:\left(\mathrm{2}{x}\right)}{\mathrm{2}{t}} \\ $$$$\mathrm{2}\left(\frac{{dt}}{{dx}}\right)^{\mathrm{2}} +\mathrm{2}{t}\frac{{d}^{\mathrm{2}} {t}}{{dx}^{\mathrm{2}} }=\mathrm{2}\left({m}^{\mathrm{2}} −{n}^{\mathrm{2}} \right)\mathrm{cos}\:\left(\mathrm{2}{x}\right) \\ $$$$\frac{\left({m}^{\mathrm{2}} −{n}^{\mathrm{2}} \right)^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \left(\mathrm{2}{x}\right)}{\mathrm{4}{t}^{\mathrm{2}} }+{t}\left(\frac{{d}^{\mathrm{2}} {t}}{{dx}^{\mathrm{2}} }\right)=\left({m}^{\mathrm{2}} −{n}^{\mathrm{2}} \right)\mathrm{cos}\:\left(\mathrm{2}{x}\right) \\ $$$${continue}… \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *