Menu Close

Q-the-equation-cos-4x-m-cos-2x-has-no-solution-x-0-pi-2-find-the-acceptable-real-values-for-m-




Question Number 191512 by mnjuly1970 last updated on 25/Apr/23
       Q:       the equation            ⌊ cos(4x )⌋=m.cos(2x)     has no  solution .  x∈ (0, (π/2) )      find the acceptable         real values for    ”m”.
Q:theequationcos(4x)=m.cos(2x)hasnosolution.x(0,π2)findtheacceptablerealvaluesform.
Answered by mahdipoor last updated on 26/Apr/23
[cos(4x)]=0,1,−1  ⇒^(no answer)    mcos(2x)≠0,1,−1  m≠((0,1,−1)/(cos(2x)))   ⇒^(1<cosx<−1)    m≠0,R−(−1,−1)  ⇒⇒m=[−1,1]
[cos(4x)]=0,1,1noanswermcos(2x)0,1,1m0,1,1cos(2x)1<cosx<1m0,R(1,1)⇒⇒m=[1,1]

Leave a Reply

Your email address will not be published. Required fields are marked *