Menu Close

Q-the-non-zero-vector-a-a-1-a-2-a-3-with-the-coordinate-axes-makes-the-angles-and-prove-that-the-following-eq




Question Number 188881 by mnjuly1970 last updated on 08/Mar/23
      Q :  the non−zero vector a^→  = (a_1  , a_( 2)  , a_( 3)  ) with               the  coordinate axes makes the               angles  ,  α   ,  β  and   γ .  prove               that  the following equality.                 cos^( 2)  (α ) +cos^( 2)  (β  )+ cos^( 2)  ( γ )= 1
$$ \\ $$$$\:\:\:\:\mathrm{Q}\::\:\:\mathrm{the}\:\mathrm{non}−\mathrm{zero}\:\mathrm{vector}\:\overset{\rightarrow} {{a}}\:=\:\left({a}_{\mathrm{1}} \:,\:{a}_{\:\mathrm{2}} \:,\:{a}_{\:\mathrm{3}} \:\right)\:\mathrm{with} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{the}\:\:\mathrm{coordinate}\:\mathrm{axes}\:\mathrm{makes}\:\mathrm{the} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{angles}\:\:,\:\:\alpha\:\:\:,\:\:\beta\:\:\mathrm{and}\:\:\:\gamma\:.\:\:\mathrm{prove} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{that}\:\:\mathrm{the}\:\mathrm{following}\:\mathrm{equality}. \\ $$$$\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\mathrm{cos}^{\:\mathrm{2}} \:\left(\alpha\:\right)\:+\mathrm{cos}^{\:\mathrm{2}} \:\left(\beta\:\:\right)+\:\mathrm{cos}^{\:\mathrm{2}} \:\left(\:\gamma\:\right)=\:\mathrm{1} \\ $$$$ \\ $$$$ \\ $$
Answered by mr W last updated on 08/Mar/23
d=(√(a_1 ^2 +a_2 ^2 +a_3 ^2 ))  ⇒cos α=(a_1 /d)  ⇒cos β=(a_2 /d)  ⇒cos γ=(a_3 /d)  cos^2  α+cos^2  β+cos^2  γ=((a_1 ^2 +a_2 ^2 +a_3 ^2 )/d^2 )=1
$${d}=\sqrt{{a}_{\mathrm{1}} ^{\mathrm{2}} +{a}_{\mathrm{2}} ^{\mathrm{2}} +{a}_{\mathrm{3}} ^{\mathrm{2}} } \\ $$$$\Rightarrow\mathrm{cos}\:\alpha=\frac{{a}_{\mathrm{1}} }{{d}} \\ $$$$\Rightarrow\mathrm{cos}\:\beta=\frac{{a}_{\mathrm{2}} }{{d}} \\ $$$$\Rightarrow\mathrm{cos}\:\gamma=\frac{{a}_{\mathrm{3}} }{{d}} \\ $$$$\mathrm{cos}^{\mathrm{2}} \:\alpha+\mathrm{cos}^{\mathrm{2}} \:\beta+\mathrm{cos}^{\mathrm{2}} \:\gamma=\frac{{a}_{\mathrm{1}} ^{\mathrm{2}} +{a}_{\mathrm{2}} ^{\mathrm{2}} +{a}_{\mathrm{3}} ^{\mathrm{2}} }{{d}^{\mathrm{2}} }=\mathrm{1} \\ $$
Commented by mnjuly1970 last updated on 08/Mar/23
thanks alot sir W
$${thanks}\:{alot}\:{sir}\:{W} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *