Question Number 36030 by kami last updated on 27/May/18
$$\mathrm{Q}.\:\mathrm{What}\:\mathrm{will}\:\mathrm{be}\:\mathrm{the}\:\mathrm{expression}\:\mathrm{for}\:\mathrm{area}\:\mathrm{of}\:\mathrm{sphere}?\: \\ $$$$\:\:\:\:\:\:\:\:\mathrm{If}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{cube}\:\mathrm{is}\:\mathrm{4}\pi\mathrm{r}^{\mathrm{2}} .\:\mathrm{And}\:\mathrm{all}\:\mathrm{sides}\:\mathrm{of}\:\mathrm{cube}\:\mathrm{touches}\:\mathrm{the}\:\mathrm{sphere}. \\ $$
Commented by Rasheed.Sindhi last updated on 28/May/18
$$\mathrm{What}\:\mathrm{does}\:\mathrm{r}\:\mathrm{represent}\:\mathrm{to}?\:\mathrm{Is}\:\mathrm{it}\:\mathrm{radius}\:\mathrm{of} \\ $$$$\mathrm{sphere}? \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 28/May/18
$${let}\:{side}\:{of}\:{cube}\:={L} \\ $$$$\mathrm{6}{L}^{\mathrm{2}} =\mathrm{4}\Pi{r}^{\mathrm{2}\:} \\ $$$${L}=\left(\frac{\mathrm{4}\Pi{r}^{\mathrm{2}} }{\mathrm{6}}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} \\ $$$${what}\:{is}\:{the}\:{radius}\:{of}\:{sphere} \\ $$$${pls}\:{vlarify}\:{the}\:{question} \\ $$$$ \\ $$