Menu Close

Q-y-xcosx-x-xsinx-1-x-then-find-dy-dx-




Question Number 112720 by deepak@7237 last updated on 09/Sep/20
Q. y = (xcosx)^x + (xsinx)^(1/x)  then find  (dy/dx)
Q.y=(xcosx)x+(xsinx)1xthenfinddydx
Answered by deepak@7237 last updated on 09/Sep/20
Answered by 1549442205PVT last updated on 09/Sep/20
Put f(x)=(xcosx)^x ,g(x)=(xsinx)^(1/x)   ln[f(x)]=xln(xcosx),ln[g(x)]=(1/x)ln(xsinx)  Derivative two sides of each equality  by x we get:  ((f ′(x))/(f(x)))=ln(xcosx)+x.[(1/(xcosx))×(cosx−xsinx)]  =ln(xcosx)+((cosx−xsinx)/(cosx))  ⇒f ′(x)=(xcosx)^x ×[ln(xcosx)+((cosx−xsinx)/(cosx))]  ((g′(x))/(g(x)))=(−(1/x^2 ))ln(xsinx)+(1/x)[(1/(xsinx))×(sinx+xcosx)]  =−(1/x^2 )ln(xsinx)+((sinx+xcosx)/(x^2 sinx))  ⇒g′(x)=(xsinx)^(1/x) ×[(1/x^2 )ln(xsinx)+((sinx+xcosx)/(x^2 sinx))]  (dy/dx)=f ′(x)+g′(x)  =(xcosx)^x ×[ln(xcosx)+((cosx−xsinx)/(cosx))]  +(xsinx)^(1/x) ×[(1/x^2 )ln(xsinx)+((sinx+xcosx)/(x^2 sinx))]
Putf(x)=(xcosx)x,g(x)=(xsinx)1xln[f(x)]=xln(xcosx),ln[g(x)]=1xln(xsinx)Derivativetwosidesofeachequalitybyxweget:f(x)f(x)=ln(xcosx)+x.[1xcosx×(cosxxsinx)]=ln(xcosx)+cosxxsinxcosxf(x)=(xcosx)x×[ln(xcosx)+cosxxsinxcosx]g(x)g(x)=(1x2)ln(xsinx)+1x[1xsinx×(sinx+xcosx)]=1x2ln(xsinx)+sinx+xcosxx2sinxg(x)=(xsinx)1x×[1x2ln(xsinx)+sinx+xcosxx2sinx]dydx=f(x)+g(x)=(xcosx)x×[ln(xcosx)+cosxxsinxcosx]+(xsinx)1x×[1x2ln(xsinx)+sinx+xcosxx2sinx]

Leave a Reply

Your email address will not be published. Required fields are marked *