Menu Close

Q1-a-solve-for-x-9-x-5-3-x-6-b-write-down-the-first-4-terms-in-the-binomial-expansion-of-1-3x-7-c-the-sum-S-n-of-the-first-n-th-terms-is-given-by-S-n-3-1-2-3-n-find-d-the-c




Question Number 35304 by Rio Mike last updated on 17/May/18
 Q1.   a) solve for x  9^x +5(3^x )=6  b)write down the first  4 terms  in the binomial expansion of (1−3x)^7   c)the sum S_n  of the first n^(th) terms  is given by S_(n ) = 3(1−((2/3))^n ) find  d) the common ratio  e) the sum to infinity of the progression
Q1.a)solveforx9x+5(3x)=6b)writedownthefirst4termsinthebinomialexpansionof(13x)7c)thesumSnofthefirstnthtermsisgivenbySn=3(1(23)n)findd)thecommonratioe)thesumtoinfinityoftheprogression
Commented by prakash jain last updated on 17/May/18
9^x +5∙3^x =6  3^(2x) +5∙3^x −6=0  3^(2x) +6∙3^x −3^x −6=0  3^x (3^x +6)−(3^x +6)=0  (3^x −1)(3^x +6)=0  3^x =−6 (not possible fof x∈R  3^x =1⇒x=0  ans x=0
9x+53x=632x+53x6=032x+63x3x6=03x(3x+6)(3x+6)=0(3x1)(3x+6)=03x=6(notpossiblefofxR3x=1x=0ansx=0
Commented by Rasheed.Sindhi last updated on 18/May/18
Welcome back SIR! I haven′t seen your  post for long time.Are you too busy   nowadays?
WelcomebackSIR!Ihaventseenyourpostforlongtime.Areyoutoobusynowadays?
Commented by rahul 19 last updated on 18/May/18
No problem sir ��
Commented by prakash jain last updated on 18/May/18
Was very busy in office. Could  only read the post once in a week.
Wasverybusyinoffice.Couldonlyreadthepostonceinaweek.
Answered by MJS last updated on 18/May/18
(3^x )^2 +5(3^x )−6=0  (3^x )=−(5/2)±(√(((25)/4)+6))=−(5/2)±(7/2)  (3^x )=−6 ∨ (3^x )=1  x_2 =0  x_1 =((ln 6)/(ln 3))+(((2n+1)π)/(ln 3))i; n∈N_0     (a−b)^7 = ((7),(0) )×a^7 − ((7),(1) )×a^6 b+ ((7),(2) )×a^5 b^2 − ((7),(3) )×a^4 b^3 + ((7),(4) )×a^3 b^4 − ((7),(5) )×a^2 b^5 + ((7),(6) )×ab^6 − ((7),(7) )×ib^7   (1−3x)^7 =1−21x+189x^2 −945x^3 +2835x^4 −5103x^5 +5103x^6 −2187x^7     the ratio is (2/3)  p_n =((2/3))^n   p_n =q^n  ⇒ S_n =((q^(n+1) −1)/(q−1))  S_∞ =(1/(1−q))=3
(3x)2+5(3x)6=0(3x)=52±254+6=52±72(3x)=6(3x)=1x2=0x1=ln6ln3+(2n+1)πln3i;nN0(ab)7=(70)×a7(71)×a6b+(72)×a5b2(73)×a4b3+(74)×a3b4(75)×a2b5+(76)×ab6(77)×ib7(13x)7=121x+189x2945x3+2835x45103x5+5103x62187x7theratiois23pn=(23)npn=qnSn=qn+11q1S=11q=3
Answered by Rasheed.Sindhi last updated on 27/May/18
(c) S_n = 3(1−((2/3))^n )    First term=a=3(1−((2/3))^1 )=1     ⋇Common ratio  r  1+r=(S_2 /S_1 )=((3(1−((2/3))^2 ))/(3(1−((2/3))^1 )))   [(S_2 /S_1 )=((a+ar)/a)=1+r]                   =(((1−(2/3))(1+(2/3)))/((1−(2/3))))=(5/3)        r=(5/3)−1=(2/3)      ⋇ Sum of infinite terms=(a/(1−r))=(1/(1−(2/3)))              =(1/(1/3))=3
(c)Sn=3(1(23)n)Firstterm=a=3(1(23)1)=1Commonratior1+r=S2S1=3(1(23)2)3(1(23)1)[S2S1=a+ara=1+r]=(123)(1+23)(123)=53r=531=23Sumofinfiniteterms=a1r=1123=11/3=3
Commented by Rasheed.Sindhi last updated on 27/May/18
Corrected.
Corrected.

Leave a Reply

Your email address will not be published. Required fields are marked *