Menu Close

Q1-Evaluate-1-1-x-x-3-1-dx-Q2-Find-the-sum-of-all-integers-k-for-which-the-equation-2x-3-6x-2-k-0-has-more-than-one-solution-Q3-Find-the-shortest-distance-from-a-point-on-the-c




Question Number 103492 by abony1303 last updated on 15/Jul/20
Q1:  Evaluate ∫_(−1) ^( 1) ∣x∣∙(x^3 +1)dx    Q2: Find the sum of all integers k for   which the equation 2x^3 −6x^2 +k=0  has more than one solution.    Q3: Find the shortest distance from a   point on the curve y=x^2 −x to the line  y=x−3
Q1:Evaluate11x(x3+1)dxQ2:Findthesumofallintegerskforwhichtheequation2x36x2+k=0hasmorethanonesolution.Q3:Findtheshortestdistancefromapointonthecurvey=x2xtotheliney=x3
Commented by abony1303 last updated on 15/Jul/20
pls help
plshelp
Answered by mr W last updated on 15/Jul/20
Q2  2x^2 (x−3)+k=0  k<0 ⇒one root: x>3  k=0 ⇒two roots: x=0 or 3  k>0:  (1/x^3 )−(6/(kx))+(2/k)=0  such that three roots:  ((1/k))^2 +(−(2/k))^3 <0  ((1/k))^2 (1−(8/k))<0  1−(8/k)<0  k<8  ⇒k=1,2,3,...,7  Σk=((7(1+7))/2)=28
Q22x2(x3)+k=0k<0oneroot:x>3k=0tworoots:x=0or3k>0:1x36kx+2k=0suchthatthreeroots:(1k)2+(2k)3<0(1k)2(18k)<018k<0k<8k=1,2,3,,7Σk=7(1+7)2=28
Commented by abony1303 last updated on 15/Jul/20
thank you sir. but I drew a graph and k=8  also correct? And pls can you explain the  raw such that three roots... and below it.
thankyousir.butIdrewagraphandk=8alsocorrect?Andplscanyouexplaintherawsuchthatthreerootsandbelowit.
Commented by mr W last updated on 15/Jul/20
i misread the question as: more than  two roots.  for more than one root: the answer  is Σk=0+1+2+3+...+8=36    we have:  (1/x^3 )−(6/(kx))+(2/k)=0  let t=(1/x), then  t^3 −(6/k)t+(2/k)=0  three roots for x ⇒ three roots for t.    let f(t)=t^3 +bt+c  if f(t)=0 has three roots, it means  f′(t)=0 ⇒3t^2 +b=0⇒t_(1,2) =±(√(−(b/3)))  f(t_1 )f(t_2 )<0, see diagram.  f(t_1 )=t_1 ^3 +bt_1 +c=(1/3)t_1 (3t_1 ^2 +b)+((2bt_1 )/3)+c=((2bt_1 )/3)+c  f(t_2 )=((2bt_2 )/3)+c  (((2bt_1 )/3)+c)(((2bt_2 )/3)+c)<0  ((4b^2 )/9)t_1 t_2 +((2b)/3)(t_1 +t_2 )+c^2 <0  ((4b^2 )/9)×(b/3)+((2b)/3)×0+c^2 <0  ⇒((b/3))^3 +((c/2))^2 <0  with b=−(6/k), c=(2/k)  ⇒(−(2/k))^3 +((1/k))^2 <0
imisreadthequestionas:morethantworoots.formorethanoneroot:theanswerisΣk=0+1+2+3++8=36wehave:1x36kx+2k=0lett=1x,thent36kt+2k=0threerootsforxthreerootsfort.letf(t)=t3+bt+ciff(t)=0hasthreeroots,itmeansf(t)=03t2+b=0t1,2=±b3f(t1)f(t2)<0,seediagram.f(t1)=t13+bt1+c=13t1(3t12+b)+2bt13+c=2bt13+cf(t2)=2bt23+c(2bt13+c)(2bt23+c)<04b29t1t2+2b3(t1+t2)+c2<04b29×b3+2b3×0+c2<0(b3)3+(c2)2<0withb=6k,c=2k(2k)3+(1k)2<0
Commented by mr W last updated on 15/Jul/20
Commented by mr W last updated on 15/Jul/20
Commented by mr W last updated on 15/Jul/20
Commented by mr W last updated on 15/Jul/20
Commented by mr W last updated on 15/Jul/20
Commented by mr W last updated on 15/Jul/20
Commented by mr W last updated on 15/Jul/20
three roots only for 1≤k≤7.  two roots only for k=0 or 8.  one root only for k≤−1 or k≥9.
threerootsonlyfor1k7.tworootsonlyfork=0or8.onerootonlyfork1ork9.
Answered by mr W last updated on 15/Jul/20
Q3  y=x^2 −x  y′=2x−1=1 ⇒x=1, y=0  d_(min) =((∣1×1−1×0−3∣)/( (√(1^2 +(−1)^2 ))))=(√2)
Q3y=x2xy=2x1=1x=1,y=0dmin=1×11×0312+(1)2=2
Answered by mr W last updated on 15/Jul/20
Q1  ∫_(−1) ^( 1) ∣x∣∙(x^3 +1)dx  =∫_(−1) ^( 1) ∣x∣∙x^3 dx+∫_(−1) ^( 1) ∣x∣dx  =0+2∫_0 ^( 1) xdx  =1
Q111x(x3+1)dx=11xx3dx+11xdx=0+201xdx=1
Answered by OlafThorendsen last updated on 15/Jul/20
Q1.  I = ∫_(−1) ^1 ∣x∣(x^3 +1)dx  I = ∫_(−1) ^0 −x(x^3 +1)dx+∫_0 ^1 x(x^3 +1)dx  I = [−(x^5 /5)−(x^2 /2)]_(−1) ^0 +[(x^5 /5)+(x^2 /2)]_0 ^1   I = (−(1/5)+(1/2))+((1/5)+(1/2))  I = 1  Q2.  Δ′ = (−3)^2 −(2)(k) = 9−2k  More than one solution ⇔ Δ′>0  ⇔ k<(9/2)  ⇔ k∈{0;1;2;3;4}  ⇒ sum = 0+1+2+3+4 = 10  Q3.  A is a point of the curve  B is a point of the line  A ((a),((a^2 −a)) ) and B ((b),((b−3)) )  AB^2  = (b−a)^2 +(b−3−a^2 +a)^2   for a given a, AB^2  = f(b)  f(b) = (b−a)^2 +(b−3−a^2 +a)^2   f′(b) = 2(b−a)+2(b−3−a^2 +a)  f′(b) = 4b−2a^2 −6  f′(b) = 0 ⇔ b = ((a^2 +3)/2)  Then :  AB^2  = (((a^2 +3)/2)−a)^2 +(((a^2 +3)/2)−3−a^2 +a)^2   AB^2  = ((a^2 /2)−a+(3/2))^2 +(−(a^2 /2)+a−(3/2))^2   AB^2  = 2((a^2 /2)−a+(3/2))^2   AB = (√2)∣(a^2 /2)−a+(3/2)∣ and then :  A ((a),((a^2 −a)) )  and B ((((a^2 +3)/2)),(((a^2 −3)/2)) )
Q1.I=11x(x3+1)dxI=10x(x3+1)dx+01x(x3+1)dxI=[x55x22]10+[x55+x22]01I=(15+12)+(15+12)I=1Q2.Δ=(3)2(2)(k)=92kMorethanonesolutionΔ>0k<92k{0;1;2;3;4}sum=0+1+2+3+4=10Q3.AisapointofthecurveBisapointofthelineA(aa2a)andB(bb3)AB2=(ba)2+(b3a2+a)2foragivena,AB2=f(b)f(b)=(ba)2+(b3a2+a)2f(b)=2(ba)+2(b3a2+a)f(b)=4b2a26f(b)=0b=a2+32Then:AB2=(a2+32a)2+(a2+323a2+a)2AB2=(a22a+32)2+(a22+a32)2AB2=2(a22a+32)2AB=2a22a+32andthen:A(aa2a)andB(a2+32a232)
Commented by abony1303 last updated on 15/Jul/20
no, no it′s ok. :)
no,noitsok.:)
Commented by OlafThorendsen last updated on 15/Jul/20
sorry ! I need to change my  glasses ! :−)
sorry!Ineedtochangemyglasses!:)
Commented by abony1303 last updated on 15/Jul/20
Thank you ser.Everything is clear, but   can you pls explain what is △′ in Q2?
Thankyouser.Everythingisclear,butcanyouplsexplainwhatisinQ2?
Commented by bemath last updated on 15/Jul/20
Δ = b^2 −4ac   discriminant
Δ=b24acdiscriminant
Commented by abony1303 last updated on 15/Jul/20
but it′s not the quadratic equation?
butitsnotthequadraticequation?
Commented by OlafThorendsen last updated on 15/Jul/20
Δ′ : reduced discriminant  (sorry my english is not fluent)  x = ((−b±(√Δ))/(2a)) with Δ = b^2 −4ac  but when b is even you can use :  x = ((−b′±(√(Δ′)))/a)  with b′ = (b/2) and Δ′ = b′^2 −ac  (the calculation is faster)
Δ:reduceddiscriminant(sorrymyenglishisnotfluent)x=b±Δ2awithΔ=b24acbutwhenbisevenyoucanuse:x=b±Δawithb=b2andΔ=b2ac(thecalculationisfaster)
Commented by abony1303 last updated on 15/Jul/20
ser but it′s not the quadratic equation?
serbutitsnotthequadraticequation?

Leave a Reply

Your email address will not be published. Required fields are marked *