Menu Close

Q1-find-tow-power-series-solutions-of-the-given-D-E-about-x-0-y-2xy-y-0-Q2-use-the-power-series-method-to-solve-the-given-intial-value-problem-y-2xy-8y-0-y-0-3y-0-0-




Question Number 89624 by M±th+et£s last updated on 18/Apr/20
Q1)find tow power series solutions of the   given D.E about x=0  y^(′′) −2xy^′ +y=0    Q2)use the power series method  to solve the  given intial value problem  y^(′′) −2xy^′ +8y=0  y(0)=3y^′ (0)=0
Q1)findtowpowerseriessolutionsofthegivenD.Eaboutx=0y2xy+y=0Q2)usethepowerseriesmethodtosolvethegivenintialvalueproblemy2xy+8y=0y(0)=3y(0)=0
Commented by mathmax by abdo last updated on 18/Apr/20
y^(′′) −2xy^′  +y =0  let y =Σ_(n=0) ^∞  a_n x^n   ⇒y^′ =Σ_(n=1) ^∞ na_n x^(n−1)  =Σ_(n=0) ^∞ (n+1)a_(n+1) x^n   and y^((2)) =Σ_(n=2) ^∞ n(n−1)a_n x^(n−2)  =Σ_(n=0) ^∞ (n+2)(n+1)a_(n+2) x^n   (e)⇒Σ_(n=0) ^∞ (n+2)(n+1)a_(n+2) x^n  −2Σ_(n=0) ^∞ (n+1)a_(n+1) x^(n+1)   +Σ_(n=0) ^∞ a_n x^n =0 ⇒  Σ_(n=0) ^∞ (n+1)(n+2)a_(n+2) x^n  −2Σ_(n=1) ^∞ na_n x^n  +Σ_(n=0) ^∞ a_n x^n =0  ⇒2a_2  +Σ_(n=1) ^∞ {(n+1)(n+2)a_(n+2) +(1−2n)a_n }x^n =0 ⇒   { ((a_2  =0)),(((n+1)(n+2)a_(n+2) =(2n−1)a_n   ∀n≥1 ⇒)) :}   { ((a_2 =0)),((a_(n+2) =((2n−1)/((n+1)(n+2)))a_n   ∀n≥1)) :}  a_(2n+2) =((4n−1)/((2n+1)(2n+2)))a_(2n)  ⇒Π_(k=2) ^n  (a_(2k+2) /a_(2k) ) =Π_(k=2) ^n  ((4k−1)/(2(2k+1)(k+1)))  (a_6 /a_4 )......(a_(2n) /a_(2n−2) ).(a_(2n+2) /a_(2n) ) =(1/2^n )Π_(k=1) ^n  ((4k−1)/((k+1)(2k+1))) ⇒  a_(2n+2) =(a_4 /2^n )((3/(2.3))×(7/(3.5))×((11)/(4×7))×.....((4n−1)/((n+1)(2n+1))))  we follow the same way to find  a_(2n+1) ...
y2xy+y=0lety=n=0anxny=n=1nanxn1=n=0(n+1)an+1xnandy(2)=n=2n(n1)anxn2=n=0(n+2)(n+1)an+2xn(e)n=0(n+2)(n+1)an+2xn2n=0(n+1)an+1xn+1+n=0anxn=0n=0(n+1)(n+2)an+2xn2n=1nanxn+n=0anxn=02a2+n=1{(n+1)(n+2)an+2+(12n)an}xn=0{a2=0(n+1)(n+2)an+2=(2n1)ann1{a2=0an+2=2n1(n+1)(n+2)ann1a2n+2=4n1(2n+1)(2n+2)a2nk=2na2k+2a2k=k=2n4k12(2k+1)(k+1)a6a4a2na2n2.a2n+2a2n=12nk=1n4k1(k+1)(2k+1)a2n+2=a42n(32.3×73.5×114×7×..4n1(n+1)(2n+1))wefollowthesamewaytofinda2n+1
Commented by M±th+et£s last updated on 18/Apr/20
thanx sir and what about Q2
thanxsirandwhataboutQ2
Commented by mathmax by abdo last updated on 18/Apr/20
add the inital condition...
addtheinitalcondition
Answered by ajfour last updated on 18/Apr/20
y=c_0 +c_1 x+c_2 x^2 +c_3 x^3 +...c_n x^n   y′=c_1 +2c_2 x+3c_3 x^2 +....+nc_n x^(n−1)   y′′=2c_2 +2.3c_3 x+....+n(n−1)c_n x^(n−2)   n(n−1)c_n −2(n−2)c_(n−2) +c_(n−2) =0  (n+1)(n+2)c_(n+2) =(2n−1)c_n   c_(n+2) =((2n−1)/((n+1)(n+2)))c_n   2c_2 =c_0    ,   c_3 =(c_1 /6)
y=c0+c1x+c2x2+c3x3+cnxny=c1+2c2x+3c3x2+.+ncnxn1y=2c2+2.3c3x+.+n(n1)cnxn2n(n1)cn2(n2)cn2+cn2=0(n+1)(n+2)cn+2=(2n1)cncn+2=2n1(n+1)(n+2)cn2c2=c0,c3=c16
Commented by M±th+et£s last updated on 18/Apr/20
thank you sir
thankyousir
Commented by M±th+et£s last updated on 18/Apr/20
sir can you help with Q_2  and thank you
sircanyouhelpwithQ2andthankyou
Commented by ajfour last updated on 18/Apr/20
dont much remember all these,  its all there in Erwin Kreyzig.
dontmuchrememberallthese,itsallthereinErwinKreyzig.
Commented by M±th+et£s last updated on 18/Apr/20
ok sir thank you
oksirthankyou

Leave a Reply

Your email address will not be published. Required fields are marked *