Menu Close

Q1-If-f-R-R-is-defined-by-f-x-x-x-1-2-x-2-3-3x-5-where-x-is-the-integral-part-of-x-then-a-period-of-f-is-A-1-B-2-3-C-1-2-D-




Question Number 119634 by Ar Brandon last updated on 25/Oct/20
Q1  If f:R→R is defined by          f(x)=[x]+[x+(1/2)]+[x+(2/3)]−3x+5  where [x] is the integral part of x, then a period of f is  (A) 1                 (B) 2/3                 (C) 1/2                 (D) 1/3    Q2  Let a<c<b such that c−a=b−c. If f:R→R is a  function satisfying the relation    f(x+a)+f(x+b)=f(x+c)  for all x∈R  then a period of f is  (A) (b−a)                                        (B) 2(b−a)  (C) 3(b−a)                                      (D) 4(b−a)
Q1Iff:RRisdefinedbyf(x)=[x]+[x+12]+[x+23]3x+5where[x]istheintegralpartofx,thenaperiodoffis(A)1(B)2/3(C)1/2(D)1/3Q2Leta<c<bsuchthatca=bc.Iff:RRisafunctionsatisfyingtherelationf(x+a)+f(x+b)=f(x+c)forallxRthenaperiodoffis(A)(ba)(B)2(ba)(C)3(ba)(D)4(ba)
Answered by Olaf last updated on 26/Oct/20
  Q2.  c−a = b−c  c = ((a+b)/2)    f(x+c) = f(x+a)+f(x+b)  f(x) = f(x+a−c)+f(x+b−c)  f(x) = f(x+a−((a+b)/2))+f(x+b−((a+b)/2))  f(x) = f(x−(1/2)(b−a))+f(x+(1/2)(b−a))    f(x−(1/2)(b−a)) = f(x−(b−a))+f(x)  f(x)−f(x+(1/2)(b−a)) = f(x−(b−a))+f(x)  f(x+(1/2)(b−a)) = −f(x−(b−a))    f(x+(3/2)(b−a)) = −f(x)     f(x+3(b−a)) = −f(x+(3/2)(b−a))   f(x+3(b−a)) = −[−f(x)] = f(x)    Period is 3(b−a)
Q2.ca=bcc=a+b2f(x+c)=f(x+a)+f(x+b)f(x)=f(x+ac)+f(x+bc)f(x)=f(x+aa+b2)+f(x+ba+b2)f(x)=f(x12(ba))+f(x+12(ba))f(x12(ba))=f(x(ba))+f(x)f(x)f(x+12(ba))=f(x(ba))+f(x)f(x+12(ba))=f(x(ba))f(x+32(ba))=f(x)f(x+3(ba))=f(x+32(ba))f(x+3(ba))=[f(x)]=f(x)Periodis3(ba)
Answered by Olaf last updated on 26/Oct/20
Q1.  f(x) = [x]+[x+(1/2)]+[x+(2/3)]−3x+5  f(x+1) = [x+1]+[(x+(1/2))+1]  +[(x+(2/3))+1]−3(x+1)+5  f(x+1) = [x]+1+[x+(1/2)]+1  +[x+(2/3)]+1−3(x+1)+5  f(x+1) = [x]+[x+(1/2)]+[x+(2/3)]−3x+5  f(x+1) = f(x)  f is clearly at least 1−periodic.    f(0) = [0]+[(1/2)]+[(2/3)]−3(0)+5 = 5  f((1/3)) = [(1/3)]+[(5/6)]+[1]−3((1/3))+5 = 5  f((1/3)) = f(0)  By extension, in the general case :  f(x+(1/3)) = f(x)  f is (1/3)−periodic.
Q1.f(x)=[x]+[x+12]+[x+23]3x+5f(x+1)=[x+1]+[(x+12)+1]+[(x+23)+1]3(x+1)+5f(x+1)=[x]+1+[x+12]+1+[x+23]+13(x+1)+5f(x+1)=[x]+[x+12]+[x+23]3x+5f(x+1)=f(x)fisclearlyatleast1periodic.f(0)=[0]+[12]+[23]3(0)+5=5f(13)=[13]+[56]+[1]3(13)+5=5f(13)=f(0)Byextension,inthegeneralcase:f(x+13)=f(x)fis13periodic.
Commented by Ar Brandon last updated on 26/Oct/20
Thank you so very much Sir ��

Leave a Reply

Your email address will not be published. Required fields are marked *