Question Number 119634 by Ar Brandon last updated on 25/Oct/20
$$\mathrm{Q1} \\ $$$$\mathrm{If}\:{f}:\mathbb{R}\rightarrow\mathbb{R}\:\mathrm{is}\:\mathrm{defined}\:\mathrm{by} \\ $$$$\:\:\:\:\:\:\:\:{f}\left(\mathrm{x}\right)=\left[\mathrm{x}\right]+\left[\mathrm{x}+\frac{\mathrm{1}}{\mathrm{2}}\right]+\left[\mathrm{x}+\frac{\mathrm{2}}{\mathrm{3}}\right]−\mathrm{3x}+\mathrm{5} \\ $$$$\mathrm{where}\:\left[\mathrm{x}\right]\:\mathrm{is}\:\mathrm{the}\:\mathrm{integral}\:\mathrm{part}\:\mathrm{of}\:\mathrm{x},\:\mathrm{then}\:\mathrm{a}\:\mathrm{period}\:\mathrm{of}\:{f}\:\mathrm{is} \\ $$$$\left(\mathrm{A}\right)\:\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{B}\right)\:\mathrm{2}/\mathrm{3}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{C}\right)\:\mathrm{1}/\mathrm{2}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{D}\right)\:\mathrm{1}/\mathrm{3} \\ $$$$ \\ $$$$\mathrm{Q2} \\ $$$$\mathrm{Let}\:{a}<\mathrm{c}<\mathrm{b}\:\mathrm{such}\:\mathrm{that}\:\mathrm{c}−{a}=\mathrm{b}−\mathrm{c}.\:\mathrm{If}\:{f}:\mathbb{R}\rightarrow\mathbb{R}\:\mathrm{is}\:\mathrm{a} \\ $$$$\mathrm{function}\:\mathrm{satisfying}\:\mathrm{the}\:\mathrm{relation} \\ $$$$\:\:{f}\left(\mathrm{x}+{a}\right)+{f}\left(\mathrm{x}+\mathrm{b}\right)={f}\left(\mathrm{x}+\mathrm{c}\right)\:\:\mathrm{for}\:\mathrm{all}\:\mathrm{x}\in\mathbb{R} \\ $$$$\mathrm{then}\:\mathrm{a}\:\mathrm{period}\:\mathrm{of}\:{f}\:\mathrm{is} \\ $$$$\left(\mathrm{A}\right)\:\left(\mathrm{b}−{a}\right)\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{B}\right)\:\mathrm{2}\left(\mathrm{b}−{a}\right) \\ $$$$\left(\mathrm{C}\right)\:\mathrm{3}\left(\mathrm{b}−{a}\right)\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{D}\right)\:\mathrm{4}\left(\mathrm{b}−{a}\right) \\ $$
Answered by Olaf last updated on 26/Oct/20
$$ \\ $$$$\mathrm{Q2}. \\ $$$${c}−{a}\:=\:{b}−{c} \\ $$$${c}\:=\:\frac{{a}+{b}}{\mathrm{2}} \\ $$$$ \\ $$$${f}\left({x}+{c}\right)\:=\:{f}\left({x}+{a}\right)+{f}\left({x}+{b}\right) \\ $$$${f}\left({x}\right)\:=\:{f}\left({x}+{a}−{c}\right)+{f}\left({x}+{b}−{c}\right) \\ $$$${f}\left({x}\right)\:=\:{f}\left({x}+{a}−\frac{{a}+{b}}{\mathrm{2}}\right)+{f}\left({x}+{b}−\frac{{a}+{b}}{\mathrm{2}}\right) \\ $$$${f}\left({x}\right)\:=\:{f}\left({x}−\frac{\mathrm{1}}{\mathrm{2}}\left({b}−{a}\right)\right)+{f}\left({x}+\frac{\mathrm{1}}{\mathrm{2}}\left({b}−{a}\right)\right) \\ $$$$ \\ $$$${f}\left({x}−\frac{\mathrm{1}}{\mathrm{2}}\left({b}−{a}\right)\right)\:=\:{f}\left({x}−\left({b}−{a}\right)\right)+{f}\left({x}\right) \\ $$$${f}\left({x}\right)−{f}\left({x}+\frac{\mathrm{1}}{\mathrm{2}}\left({b}−{a}\right)\right)\:=\:{f}\left({x}−\left({b}−{a}\right)\right)+{f}\left({x}\right) \\ $$$${f}\left({x}+\frac{\mathrm{1}}{\mathrm{2}}\left({b}−{a}\right)\right)\:=\:−{f}\left({x}−\left({b}−{a}\right)\right) \\ $$$$ \\ $$$${f}\left({x}+\frac{\mathrm{3}}{\mathrm{2}}\left({b}−{a}\right)\right)\:=\:−{f}\left({x}\right) \\ $$$$ \\ $$$$\:{f}\left({x}+\mathrm{3}\left({b}−{a}\right)\right)\:=\:−{f}\left({x}+\frac{\mathrm{3}}{\mathrm{2}}\left({b}−{a}\right)\right) \\ $$$$\:{f}\left({x}+\mathrm{3}\left({b}−{a}\right)\right)\:=\:−\left[−{f}\left({x}\right)\right]\:=\:{f}\left({x}\right) \\ $$$$ \\ $$$$\mathrm{Period}\:\mathrm{is}\:\mathrm{3}\left({b}−{a}\right) \\ $$
Answered by Olaf last updated on 26/Oct/20
$$\mathrm{Q1}. \\ $$$${f}\left({x}\right)\:=\:\left[{x}\right]+\left[{x}+\frac{\mathrm{1}}{\mathrm{2}}\right]+\left[{x}+\frac{\mathrm{2}}{\mathrm{3}}\right]−\mathrm{3}{x}+\mathrm{5} \\ $$$${f}\left({x}+\mathrm{1}\right)\:=\:\left[{x}+\mathrm{1}\right]+\left[\left({x}+\frac{\mathrm{1}}{\mathrm{2}}\right)+\mathrm{1}\right] \\ $$$$+\left[\left({x}+\frac{\mathrm{2}}{\mathrm{3}}\right)+\mathrm{1}\right]−\mathrm{3}\left({x}+\mathrm{1}\right)+\mathrm{5} \\ $$$${f}\left({x}+\mathrm{1}\right)\:=\:\left[{x}\right]+\mathrm{1}+\left[{x}+\frac{\mathrm{1}}{\mathrm{2}}\right]+\mathrm{1} \\ $$$$+\left[{x}+\frac{\mathrm{2}}{\mathrm{3}}\right]+\mathrm{1}−\mathrm{3}\left({x}+\mathrm{1}\right)+\mathrm{5} \\ $$$${f}\left({x}+\mathrm{1}\right)\:=\:\left[{x}\right]+\left[{x}+\frac{\mathrm{1}}{\mathrm{2}}\right]+\left[{x}+\frac{\mathrm{2}}{\mathrm{3}}\right]−\mathrm{3}{x}+\mathrm{5} \\ $$$${f}\left({x}+\mathrm{1}\right)\:=\:{f}\left({x}\right) \\ $$$${f}\:\mathrm{is}\:\mathrm{clearly}\:\mathrm{at}\:\mathrm{least}\:\mathrm{1}−\mathrm{periodic}. \\ $$$$ \\ $$$${f}\left(\mathrm{0}\right)\:=\:\left[\mathrm{0}\right]+\left[\frac{\mathrm{1}}{\mathrm{2}}\right]+\left[\frac{\mathrm{2}}{\mathrm{3}}\right]−\mathrm{3}\left(\mathrm{0}\right)+\mathrm{5}\:=\:\mathrm{5} \\ $$$${f}\left(\frac{\mathrm{1}}{\mathrm{3}}\right)\:=\:\left[\frac{\mathrm{1}}{\mathrm{3}}\right]+\left[\frac{\mathrm{5}}{\mathrm{6}}\right]+\left[\mathrm{1}\right]−\mathrm{3}\left(\frac{\mathrm{1}}{\mathrm{3}}\right)+\mathrm{5}\:=\:\mathrm{5} \\ $$$${f}\left(\frac{\mathrm{1}}{\mathrm{3}}\right)\:=\:{f}\left(\mathrm{0}\right) \\ $$$$\mathrm{By}\:\mathrm{extension},\:\mathrm{in}\:\mathrm{the}\:\mathrm{general}\:\mathrm{case}\:: \\ $$$${f}\left({x}+\frac{\mathrm{1}}{\mathrm{3}}\right)\:=\:{f}\left({x}\right) \\ $$$${f}\:\mathrm{is}\:\frac{\mathrm{1}}{\mathrm{3}}−\mathrm{periodic}. \\ $$
Commented by Ar Brandon last updated on 26/Oct/20
Thank you so very much Sir