Menu Close

Qi-using-binomial-theorem-prove-that-3-2n-2-8n-9-is-divisible-by-64-where-n-is-positive-integer-Qii-By-mathematical-induction-cos-n-1-cos-n-1-2-sin-n-2-sin-




Question Number 129569 by zakirullah last updated on 16/Jan/21
Qi. using binomial theorem, prove that   (3^(2n+2 ) −8n−9) is divisible by 64, where   n is positive integer.  Qii.  By mathematical induction;     (cosα+(n−1)β) = cos(α+(((n−1)β)/2))×((sin(nβ/2))/(sin(β/2)))
Qi.usingbinomialtheorem,provethat(32n+28n9)isdivisibleby64,wherenispositiveinteger.Qii.Bymathematicalinduction;(cosα+(n1)β)=cos(α+(n1)β2)×sin(nβ/2)sin(β/2)
Answered by Dwaipayan Shikari last updated on 16/Jan/21
cosα+cos(α+β)+cos(α+2β)+...+cos(α+(n−1)β)  =(1/(2sin(β/2)))(sin(α+(β/2))−sin(α−(β/2))+sin(α+((3β)/2))−sin(α+(β/2))+...sin(α+nβ−(β/2))−sin(α+nβ−((3β)/2)))  =(1/(2sin(β/2)))(sin(α+nβ−(β/2))−sin(α−(β/2)))  =(1/(sin(β/2)))(cos(α+(((n−1)β)/2))sin(((nβ)/2)))
cosα+cos(α+β)+cos(α+2β)++cos(α+(n1)β)=12sinβ2(sin(α+β2)sin(αβ2)+sin(α+3β2)sin(α+β2)+sin(α+nββ2)sin(α+nβ3β2))=12sinβ2(sin(α+nββ2)sin(αβ2))=1sinβ2(cos(α+(n1)β2)sin(nβ2))
Commented by zakirullah last updated on 16/Jan/21
thanks sir also find Qi?
thankssiralsofindQi?
Answered by talminator2856791 last updated on 16/Jan/21
    3^(2n+2) −8n−9 = 9^(n+1) −8n−9   i.  (n+1)^k  ≡ 1 (mod n)  ,     k ∈ N    ⇒ 9^(n+1)  = (8+1)^(n+1)  ≡ 1 (mod 8)      9^(n+1) −9 = 9(9^n −1) = 9∙8Σ_(k=0) ^(n−1) 9^k     from i., deduce  Σ_(k=0) ^(n−1) 9^k  ≡ n (mod 8)   ⇒ 9∙8Σ_(k=0) ^(n−1) 9^k  ≡ 9∙8∙n (mod 8)         9∙8Σ_(k=0) ^(n−1) 9^k  ≡ 0 (mod 8)         9∙8Σ_(k=0) ^(n−1) 9^k  = 8∙8Σ_(k=0) ^(n−1) 9^k  + 8∙Σ_(k=0) ^(n−1) 9^k           8Σ_(k=0) ^(n−1)  9^k  ≡ 0 (mod 8)    ⇒ 8Σ_(k=0) ^(n−1)  9^k  ≡ 8n (mod 64)            ⇒  3^(2n+2) −9 ≡ 8n (mod 64)            3^(2n+2) −8n−9 ≡ 0 (mod 64)
32n+28n9=9n+18n9i.(n+1)k1(modn),kN9n+1=(8+1)n+11(mod8)9n+19=9(9n1)=98n1k=09kfromi.,deducen1k=09kn(mod8)98n1k=09k98n(mod8)98n1k=09k0(mod8)98n1k=09k=88n1k=09k+8n1k=09k8n1k=09k0(mod8)8n1k=09k8n(mod64)32n+298n(mod64)32n+28n90(mod64)
Commented by zakirullah last updated on 16/Jan/21
you are the great man.
youarethegreatman.

Leave a Reply

Your email address will not be published. Required fields are marked *