Menu Close

Ques-1-Let-G-be-a-group-then-show-that-for-each-a-G-a-unique-element-e-G-a-e-e-a-a-Ques-2-If-a-G-x-G-and-x-is-unique-show-that-if-x-a-e-then-a-x-e-Hello-




Question Number 191986 by Mastermind last updated on 04/May/23
Ques. 1  Let (G,∗) be a group, then show  that for each a∈G, ∃ a unique   element e∈G ∣ a∗e=e∗a=a    Ques. 2  If a∈G ⇒ x∈G and x is unique  show that if x∗a=e, then a∗x=e.      Hello!
Ques.1Let(G,)beagroup,thenshowthatforeachaG,auniqueelementeGae=ea=aQues.2IfaGxGandxisuniqueshowthatifxa=e,thenax=e.Hello!
Answered by AST last updated on 04/May/23
Ques.1 follows from the property of a group  that for every a∈G,∃ a unique element   e∈G∣a∗e=e∗a=a    2)  x∗a=e⇒x^(−1) ∗x∗a=x^(−1) ∗e⇒a=x^(−1) ∗e  ⇒a∗x=x^(−1) ∗e∗x=x^(−1) ∗x∗e=e
Ques.1followsfromthepropertyofagroupthatforeveryaG,auniqueelementeGae=ea=a2)xa=ex1xa=x1ea=x1eax=x1ex=x1xe=e
Commented by Mastermind last updated on 04/May/23
Thank you so much sir
Thankyousomuchsir

Leave a Reply

Your email address will not be published. Required fields are marked *