Menu Close

Ques-1-Metric-Space-Question-Let-X-be-the-set-of-all-bounded-sequences-of-complex-numbers-That-is-every-element-of-is-a-complex-sequence-x-x-k-1-such-x-i-lt




Question Number 191786 by Mastermind last updated on 30/Apr/23
Ques. 1 (Metric Space Question)          Let X = ρ_∞  be the set of all   bounded sequences of complex   numbers. That is every element of  ρ_∞  is a complex sequence x^− ={x^− }_(k=1) ^∞    such ∣x_i ∣<Kx^− , i=1,2,3,... where Kx  is a real number which may define  on x for an arbitrary x^− ={x_i }_(i=1) ^∞  and  y^− ={y_i }_(i=1) ^∞  in ρ_∞ we define as  d_∞ (x,y)=Sup∣x_i −y_i ∣, Verify that  d_∞  is a metric on ρ_(∞.)
$$\mathrm{Ques}.\:\mathrm{1}\:\left(\mathrm{Metric}\:\mathrm{Space}\:\mathrm{Question}\right) \\ $$$$\:\:\:\:\:\:\:\:\mathrm{Let}\:\mathrm{X}\:=\:\rho_{\infty} \:\mathrm{be}\:\mathrm{the}\:\mathrm{set}\:\mathrm{of}\:\mathrm{all}\: \\ $$$$\mathrm{bounded}\:\mathrm{sequences}\:\mathrm{of}\:\mathrm{complex}\: \\ $$$$\mathrm{numbers}.\:\mathrm{That}\:\mathrm{is}\:\mathrm{every}\:\mathrm{element}\:\mathrm{of} \\ $$$$\rho_{\infty} \:\mathrm{is}\:\mathrm{a}\:\mathrm{complex}\:\mathrm{sequence}\:\overset{−} {\mathrm{x}}=\left\{\overset{−} {\mathrm{x}}\right\}_{\mathrm{k}=\mathrm{1}} ^{\infty} \: \\ $$$$\mathrm{such}\:\mid\mathrm{x}_{\mathrm{i}} \mid<\mathrm{K}\overset{−} {\mathrm{x}},\:\mathrm{i}=\mathrm{1},\mathrm{2},\mathrm{3},…\:\mathrm{where}\:\mathrm{Kx} \\ $$$$\mathrm{is}\:\mathrm{a}\:\mathrm{real}\:\mathrm{number}\:\mathrm{which}\:\mathrm{may}\:\mathrm{define} \\ $$$$\mathrm{on}\:\mathrm{x}\:\mathrm{for}\:\mathrm{an}\:\mathrm{arbitrary}\:\overset{−} {\mathrm{x}}=\left\{\mathrm{x}_{\mathrm{i}} \right\}_{\mathrm{i}=\mathrm{1}} ^{\infty} \:\mathrm{and} \\ $$$$\overset{−} {\mathrm{y}}=\left\{\mathrm{y}_{\mathrm{i}} \right\}_{\mathrm{i}=\mathrm{1}} ^{\infty} \:\mathrm{in}\:\rho_{\infty} \mathrm{we}\:\mathrm{define}\:\mathrm{as} \\ $$$$\mathrm{d}_{\infty} \left(\mathrm{x},\mathrm{y}\right)=\mathrm{Sup}\mid\mathrm{x}_{\mathrm{i}} −\mathrm{y}_{\mathrm{i}} \mid,\:\mathrm{Verify}\:\mathrm{that} \\ $$$$\mathrm{d}_{\infty} \:\mathrm{is}\:\mathrm{a}\:\mathrm{metric}\:\mathrm{on}\:\rho_{\infty.} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *