Menu Close

Question-100561




Question Number 100561 by DGmichael last updated on 27/Jun/20
Commented by bramlex last updated on 27/Jun/20
x−y = ((x^3 −y^3 )/(x^2 +xy+y^2 ))  x=((3+(√(9+((125)/(27)))) ))^(1/(3 ))  , y = ((−3+(√(9+((125)/(27))))))^(1/(3 ))   x−y = (6/( (((3+(√(9+((125)/(27)))))^2 ))^(1/(3 )) +(((125)/(27)))^(1/(3  )) +(((−3+(√(9+((125)/(27)))))^2 ))^(1/(3  )) ))  = (6/((5/3)+((18+((125)/(27)) + 6(√(9+((125)/(27))))))^(1/(3 ))  +((18+((125)/(27))−6(√(9+((125)/(27))))))^(1/(3  )) ))
xy=x3y3x2+xy+y2x=3+9+125273,y=3+9+125273xy=6(3+9+12527)23+125273+(3+9+12527)23=653+18+12527+69+125273+18+1252769+125273
Answered by MJS last updated on 27/Jun/20
A is the solution of A^3 +pA+q=0  Cardano  A=((−(q/2)+(√((q^2 /4)+(p^3 /(27))))))^(1/3) +((−(q/2)−(√((q^2 /4)+(p^3 /(27))))))^(1/3) =  =((−(q/2)+(√((q^2 /4)+(p^3 /(27))))))^(1/3) −(((q/2)+(√((q^2 /4)+(p^3 /(27))))))^(1/3)   (q/2)=3 ⇒ q=6  (q^2 /4)=9 ⇒ q=±6  ⇒ q=6  (p^3 /(27))=((125)/(27)) ⇒ p=5  A^3 +5A+6=0  ⇒ A_1 =−1∧A_(2, 3) =(1/2)±((√(23))/2)i  ⇒ A=A_1 =−1
AisthesolutionofA3+pA+q=0CardanoA=q2+q24+p3273+q2q24+p3273==q2+q24+p3273q2+q24+p3273q2=3q=6q24=9q=±6q=6p327=12527p=5A3+5A+6=0A1=1A2,3=12±232iA=A1=1

Leave a Reply

Your email address will not be published. Required fields are marked *