Question Number 100575 by bshahid010@gmail.com last updated on 27/Jun/20
Answered by Ar Brandon last updated on 27/Jun/20
$$\mathrm{Let}\:\mathcal{I}=\underset{\mathrm{x}\rightarrow\infty} {\mathrm{lim}}\int_{\mathrm{0}} ^{\mathrm{x}} \mathrm{e}^{\mathrm{x}^{\mathrm{2}} } \mathrm{dx}=\int_{\mathrm{0}} ^{\infty} \mathrm{e}^{\mathrm{x}^{\mathrm{2}} } \mathrm{dx} \\ $$$$\Rightarrow\mathcal{I}=\begin{cases}{\int_{\mathrm{0}} ^{\infty} \mathrm{e}^{\mathrm{x}^{\mathrm{2}} } \mathrm{dx}}\\{\int_{\mathrm{0}} ^{\infty} \mathrm{e}^{\mathrm{y}^{\mathrm{2}} } \mathrm{dy}}\end{cases}\:\:\Rightarrow\mathcal{I}^{\mathrm{2}} =\int_{\mathrm{0}} ^{\infty} \int_{\mathrm{0}} ^{\infty} \mathrm{e}^{\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} } \mathrm{dxdy} \\ $$$$\Rightarrow\mathcal{I}^{\mathrm{2}} =\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \int_{\mathrm{0}} ^{\infty} \mathrm{re}^{\mathrm{r}^{\mathrm{2}} } \mathrm{drd}\theta=\left[\frac{\theta}{\mathrm{2}}\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left[\frac{\mathrm{e}^{\mathrm{r}^{\mathrm{2}} } }{\mathrm{1}}\right]_{\mathrm{0}} ^{\infty} =\underset{\mathrm{r}\rightarrow\infty} {\mathrm{lim}}\frac{\pi}{\mathrm{4}}\left(\mathrm{e}^{\mathrm{r}^{\mathrm{2}} } −\mathrm{1}\right) \\ $$$$\mathrm{Let}\:\mathcal{J}=\underset{\mathrm{x}\rightarrow\infty} {\mathrm{lim}}\int_{\mathrm{0}} ^{\mathrm{x}} \mathrm{e}^{\mathrm{2x}^{\mathrm{2}} } \mathrm{dx} \\ $$$$\Rightarrow\mathcal{J}=\begin{cases}{\int_{\mathrm{0}} ^{\infty} \mathrm{e}^{\mathrm{2x}^{\mathrm{2}} } \mathrm{dx}}\\{\int_{\mathrm{0}} ^{\infty} \mathrm{e}^{\mathrm{2y}^{\mathrm{2}} } \mathrm{dy}}\end{cases}\:\:\Rightarrow\mathcal{J}^{\mathrm{2}} =\int_{\mathrm{0}} ^{\infty} \int_{\mathrm{0}} ^{\infty} \mathrm{e}^{\mathrm{2}\left(\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \right)} \mathrm{dxdy} \\ $$$$\Rightarrow\mathcal{J}^{\mathrm{2}} =\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \int_{\mathrm{0}} ^{\infty} \mathrm{re}^{\mathrm{2r}^{\mathrm{2}} } \mathrm{drd}\theta=\left[\frac{\theta}{\mathrm{4}}\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left[\frac{\mathrm{e}^{\mathrm{2r}^{\mathrm{2}} } }{\mathrm{1}}\right]_{\mathrm{0}} ^{\infty} =\underset{\mathrm{r}\rightarrow\infty} {\mathrm{lim}}\frac{\pi}{\mathrm{8}}\left(\mathrm{e}^{\mathrm{2r}^{\mathrm{2}} } −\mathrm{1}\right) \\ $$$$\Rightarrow\underset{\mathrm{x}\rightarrow\infty} {\mathrm{lim}}\frac{\left(\int_{\mathrm{0}} ^{\mathrm{x}} \mathrm{e}^{\mathrm{x}^{\mathrm{2}} } \mathrm{dx}\right)^{\mathrm{2}} }{\int_{\mathrm{0}} ^{\mathrm{x}} \mathrm{e}^{\mathrm{2x}^{\mathrm{2}} } }=\underset{\mathrm{r}\rightarrow\infty} {\mathrm{lim}}\frac{\frac{\pi}{\mathrm{4}}\left(\mathrm{e}^{\mathrm{r}^{\mathrm{2}} } −\mathrm{1}\right)}{\:\sqrt{\frac{\pi}{\mathrm{8}}\left(\mathrm{e}^{\mathrm{2r}^{\mathrm{2}} } −\mathrm{1}\right)}}=\underset{\mathrm{r}\rightarrow\infty} {\mathrm{lim}}\frac{\pi\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{e}^{\mathrm{r}^{\mathrm{2}} } }\right)}{\:\sqrt{\mathrm{2}\pi\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{e}^{\mathrm{2r}^{\mathrm{2}} } }\right)}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\pi}{\:\sqrt{\mathrm{2}\pi}}=\sqrt{\frac{\pi}{\mathrm{2}}} \\ $$
Commented by Coronavirus last updated on 27/Jun/20
$$\:\:\:\:\mathcal{C}{lean} \\ $$
Commented by Ar Brandon last updated on 27/Jun/20
Ouais Corona, sdk ? C'est Einstein. Avec ton nom bizarre là.
Commented by Coronavirus last updated on 27/Jun/20
ça va
je profite du savoir de ce forum
Commented by Ar Brandon last updated on 27/Jun/20
Super