Menu Close

Question-100986




Question Number 100986 by Dwaipayan Shikari last updated on 29/Jun/20
Commented by bachamohamed last updated on 29/Jun/20
look this   2=(√(1+(√9)))=(√(1+(√(1+8))))=(√(1+(√(1+(√(64))))))=(√(1+(√(1+(√(1+63))))))    =(√(1+(√(1+(√(1+(√(63^2 ))))))))=(√(1+(√(1+(√(1+(√(1+(63^2 −1)))))))))  =(√(1+(√(1+(√(1+(√(1+(√(((63^2 −1))^2 ))))))))))=(√(1+(√(1+(√(1.....+(√(1........∞))))))))  3=(√9)=(√(1+(√(64))))=(√(1+(√(1+63))))=(√(1+(√(1+(√(63^2 ))))))=(√(1+(√(1+(√(1+(√(1......∞))))))))  4=(√(16))=(√(1+15))=(√(1+(√(225))))=(√(1+(√(1+224))))=(√(1+(√(1+(√(224^2 ))))))=(√(1+(√(1+(√(1...(√(....(√(1...∞))))))))))  donc pour tout nombre posituve n  n=(√(1+(√(1+(√(1+(√(1.....∞))))))))  why?
$$\boldsymbol{{look}}\:\boldsymbol{{this}}\: \\ $$$$\mathrm{2}=\sqrt{\mathrm{1}+\sqrt{\mathrm{9}}}=\sqrt{\mathrm{1}+\sqrt{\mathrm{1}+\mathrm{8}}}=\sqrt{\mathrm{1}+\sqrt{\mathrm{1}+\sqrt{\mathrm{64}}}}=\sqrt{\mathrm{1}+\sqrt{\mathrm{1}+\sqrt{\mathrm{1}+\mathrm{63}}}} \\ $$$$\:\:=\sqrt{\mathrm{1}+\sqrt{\mathrm{1}+\sqrt{\mathrm{1}+\sqrt{\mathrm{63}^{\mathrm{2}} }}}}=\sqrt{\mathrm{1}+\sqrt{\mathrm{1}+\sqrt{\mathrm{1}+\sqrt{\mathrm{1}+\left(\mathrm{63}^{\mathrm{2}} −\mathrm{1}\right)}}}} \\ $$$$=\sqrt{\mathrm{1}+\sqrt{\mathrm{1}+\sqrt{\mathrm{1}+\sqrt{\mathrm{1}+\sqrt{\left(\left(\mathrm{63}^{\mathrm{2}} −\mathrm{1}\right)\right)^{\mathrm{2}} }}}}}=\sqrt{\mathrm{1}+\sqrt{\mathrm{1}+\sqrt{\mathrm{1}…..+\sqrt{\mathrm{1}……..\infty}}}} \\ $$$$\mathrm{3}=\sqrt{\mathrm{9}}=\sqrt{\mathrm{1}+\sqrt{\mathrm{64}}}=\sqrt{\mathrm{1}+\sqrt{\mathrm{1}+\mathrm{63}}}=\sqrt{\mathrm{1}+\sqrt{\mathrm{1}+\sqrt{\mathrm{63}^{\mathrm{2}} }}}=\sqrt{\mathrm{1}+\sqrt{\mathrm{1}+\sqrt{\mathrm{1}+\sqrt{\mathrm{1}……\infty}}}} \\ $$$$\mathrm{4}=\sqrt{\mathrm{16}}=\sqrt{\mathrm{1}+\mathrm{15}}=\sqrt{\mathrm{1}+\sqrt{\mathrm{225}}}=\sqrt{\mathrm{1}+\sqrt{\mathrm{1}+\mathrm{224}}}=\sqrt{\mathrm{1}+\sqrt{\mathrm{1}+\sqrt{\mathrm{224}^{\mathrm{2}} }}}=\sqrt{\mathrm{1}+\sqrt{\mathrm{1}+\sqrt{\mathrm{1}…\sqrt{….\sqrt{\mathrm{1}…\infty}}}}} \\ $$$$\mathrm{donc}\:\mathrm{pour}\:\mathrm{tout}\:\mathrm{nombre}\:\mathrm{posituve}\:\boldsymbol{{n}} \\ $$$$\boldsymbol{{n}}=\sqrt{\mathrm{1}+\sqrt{\mathrm{1}+\sqrt{\mathrm{1}+\sqrt{\mathrm{1}…..\infty}}}} \\ $$$$\boldsymbol{{why}}? \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *