Menu Close

Question-101375




Question Number 101375 by ajfour last updated on 02/Jul/20
Commented by ajfour last updated on 02/Jul/20
In terms of R, find radii a,b,c.
IntermsofR,findradiia,b,c.
Commented by ajfour last updated on 05/Jul/20
Commented by ajfour last updated on 06/Jul/20
lets consider both circles of radii  a and c generally.  Both are at a distance of (R+r) from  center M of circle of radius R.  Both touch the line y=R^2 +(1/4)+R  both touch the parabola at (x,x^2 )  x_1 =(√(R^2 −(1/4)))  center of our general circle is       (2(√(Rr)) , R^2 +(1/4)+R−r)  eq. of the circle:   { (((x−2(√(Rr)))^2 +[x^2 −(R^2 +(1/4)+R−r)]^2 =r^2 )),(((R+(1/2))^2 −r−(r/( (√(1+4x^2 )))) = x^2 )) :}      and   x−2(√(Rr)) = ((r(2x))/( (√(1+4x^2 ))))   for r=c  but     2(√(Rr))−x=((r(2x))/( (√(1+4x^2 ))))       for r=a  And since we know x_1 =(√(R^2 −(1/4)))       2(√(Rr_1 ))=x+((2x_1 r)/( (√(1+4x_1 ^2 ))))       2(√(Ra))=(√(R^2 −(1/4))) + ((2a(√(R^2 −(1/4))))/( (√(1+4R^2 −1))))  2(√(Ra))=(√(R^2 −(1/4))) + (a/R)(√(R^2 −(1/4)))  (a/R)(√(R^2 −(1/4))) −2R(√(a/R)) +(√(R^2 −(1/4)))=0  (√(a/R))=(R/( (√(R^2 −(1/4)))))±(√((R^2 /(R^2 −(1/4)))−1))           (√(a/R)) =((R±(1/2))/( (√(R^2 −(1/4)))))  ⇒  (a/R)=(((R±(1/2))^2 )/((R+(1/2))(R−(1/2))))  It seems               (a/R)=(((R+(1/2)))/((R−(1/2))))       example   R=2  ⇒   a=((10)/3)   ..........
letsconsiderbothcirclesofradiiaandcgenerally.Bothareatadistanceof(R+r)fromcenterMofcircleofradiusR.Bothtouchtheliney=R2+14+Rbothtouchtheparabolaat(x,x2)x1=R214centerofourgeneralcircleis(2Rr,R2+14+Rr)eq.ofthecircle:{(x2Rr)2+[x2(R2+14+Rr)]2=r2(R+12)2rr1+4x2=x2andx2Rr=r(2x)1+4x2forr=cbut2Rrx=r(2x)1+4x2forr=aAndsinceweknowx1=R2142Rr1=x+2x1r1+4x122Ra=R214+2aR2141+4R212Ra=R214+aRR214aRR2142RaR+R214=0aR=RR214±R2R2141aR=R±12R214aR=(R±12)2(R+12)(R12)Itseems\boldsymbola\boldsymbolR=(\boldsymbolR+12)(\boldsymbolR12)exampleR=2a=103.
Commented by ajfour last updated on 05/Jul/20
Answered by mr W last updated on 05/Jul/20
Center of circle with radius R is  M(0,m)  y=x^2   x^2 +(y−m)^2 =R^2   ⇒y+(y−m)^2 =R^2   ⇒y^2 −(2m−1)y+m^2 −R^2 =0  Δ=(2m−1)^2 −4(m^2 −R^2 )=0  1+4R^2 −4m=0  ⇒m=(1/4)+R^2   Center of circle with radius b is  B(0,m+R+b)  x^2 +(y−m−R−b)^2 =b^2   y+[y−((1/4)+R^2 +R+b)]^2 =b^2   y^2 −2(R^2 +R+b−(1/4))y+(R^2 +R+b+(1/4))^2 −b^2 =0  Δ=(R^2 +R+b−(1/4))^2 −(R^2 +R+b+(1/4))^2 +b^2 =0  b^2 −b−(R^2 +R)=0  ⇒b=(1/2)(1+2R+1)=R+1    Center of circle with radius a is  A(2(√(Ra)),m+R−a)  it touches the parabola at P(p, p^2 ).  tan θ=2p=((2(√(Ra)))/(a−R))  ⇒p=((√(Ra))/(a−R))  (2(√(Ra))−p)^2 +(m+R−a−p^2 )^2 =a^2   (2(√(Ra))−((√(Ra))/(a−R)))^2 +[m+R−a−((Ra)/((a−R)^2 ))]^2 =a^2   [2−(1/(R((a/R)−1)))]^2 ((a/R))+(1/R^2 )[m−R((a/R)−1)−((a/R)/(((a/R)−1)^2 ))]^2 =((a/R))^2   [2−(1/(R(ξ−1)))]^2 ξ+(1/R^2 )[(1/4)+R^2 −R(ξ−1)−(ξ/((ξ−1)^2 ))]^2 =ξ^2   ⇒ξ=...    Center of circle with radius c is  C(2(√(Rc)),m+R−c)  it touches the parabola at Q(q, q^2 ).  tan ϕ=2q  q=2(√(Rc))+c sin ϕ=2(√(Rc))+((2cq)/( (√(1+4q^2 ))))  ⇒q−2(√(Rc))=((2cq)/( (√(1+4q^2 ))))   ...(i)  q^2 =m+R−c−c cos ϕ=m+R−c−(c/( (√(1+4q^2 ))))  ⇒m+R−c−q^2 =(c/( (√(1+4q^2 ))))    ...(ii)  q−2(√(Rc))=2q(m+R−c−q^2 )  q^3 −(R^2 +R−c−(1/4))q−(√(Rc))=0  ⇒q=((((√(Rc))/2)+(√(((Rc)/4)−(((R^2 +R−c−(1/4))^3 )/(27))))))^(1/3) +((((√(Rc))/2)−(√(((Rc)/4)−(((R^2 +R−c−(1/4))^3 )/(27))))))^(1/3)   put this into (i) or (ii) to get c
CenterofcirclewithradiusRisM(0,m)y=x2x2+(ym)2=R2y+(ym)2=R2y2(2m1)y+m2R2=0Δ=(2m1)24(m2R2)=01+4R24m=0m=14+R2CenterofcirclewithradiusbisB(0,m+R+b)x2+(ymRb)2=b2y+[y(14+R2+R+b)]2=b2y22(R2+R+b14)y+(R2+R+b+14)2b2=0Δ=(R2+R+b14)2(R2+R+b+14)2+b2=0b2b(R2+R)=0b=12(1+2R+1)=R+1CenterofcirclewithradiusaisA(2Ra,m+Ra)ittouchestheparabolaatP(p,p2).tanθ=2p=2RaaRp=RaaR(2Rap)2+(m+Rap2)2=a2(2RaRaaR)2+[m+RaRa(aR)2]2=a2[21R(aR1)]2(aR)+1R2[mR(aR1)aR(aR1)2]2=(aR)2[21R(ξ1)]2ξ+1R2[14+R2R(ξ1)ξ(ξ1)2]2=ξ2ξ=CenterofcirclewithradiuscisC(2Rc,m+Rc)ittouchestheparabolaatQ(q,q2).tanφ=2qq=2Rc+csinφ=2Rc+2cq1+4q2q2Rc=2cq1+4q2(i)q2=m+Rcccosφ=m+Rcc1+4q2m+Rcq2=c1+4q2(ii)q2Rc=2q(m+Rcq2)q3(R2+Rc14)qRc=0q=Rc2+Rc4(R2+Rc14)3273+Rc2Rc4(R2+Rc14)3273putthisinto(i)or(ii)togetc
Commented by mr W last updated on 05/Jul/20
Commented by ajfour last updated on 05/Jul/20
but c is to be determined, Sir.
butcistobedetermined,Sir.
Commented by mr W last updated on 05/Jul/20
a and c can only be determined   numerically.
aandccanonlybedeterminednumerically.
Commented by ajfour last updated on 05/Jul/20
if we discuss, i think we can get the  expression for radii a and c , Sir..
ifwediscuss,ithinkwecangettheexpressionforradiiaandc,Sir..
Commented by mr W last updated on 05/Jul/20
i found no way to get them.
ifoundnowaytogetthem.
Commented by ajfour last updated on 06/Jul/20
    Sir i got  a=R(R+1/2)/(R−1/2)  Expression for c indeed seems  difficult.
Sirigota=R(R+1/2)/(R1/2)Expressionforcindeedseemsdifficult.
Commented by mr W last updated on 06/Jul/20
you got it at least for a! it′s correct.
yougotitatleastfora!itscorrect.yougotitatleastfora!itscorrect.

Leave a Reply

Your email address will not be published. Required fields are marked *