Menu Close

Question-102698




Question Number 102698 by bramlex last updated on 10/Jul/20
Answered by bramlex last updated on 10/Jul/20
∫f(x) dx = h(x) ⇒f(x) = h′(x)  5+x^2 f(x) = 16x^3 −((15)/2)(√x)   x^2 f(x)=16x^3 −((15(√x))/2)−5  f(x)=16x−((15)/(2x(√x)))−(5/x^2 )=16x−((15)/2)x^(−3/2) −5x^(−2)   f ′(x)=16+((45)/(4x^2 (√x)))+((10)/x^(−3) )
$$\int\mathrm{f}\left(\mathrm{x}\right)\:\mathrm{dx}\:=\:\mathrm{h}\left(\mathrm{x}\right)\:\Rightarrow\mathrm{f}\left(\mathrm{x}\right)\:=\:\mathrm{h}'\left(\mathrm{x}\right) \\ $$$$\mathrm{5}+{x}^{\mathrm{2}} {f}\left({x}\right)\:=\:\mathrm{16}{x}^{\mathrm{3}} −\frac{\mathrm{15}}{\mathrm{2}}\sqrt{{x}}\: \\ $$$${x}^{\mathrm{2}} {f}\left({x}\right)=\mathrm{16}{x}^{\mathrm{3}} −\frac{\mathrm{15}\sqrt{{x}}}{\mathrm{2}}−\mathrm{5} \\ $$$${f}\left({x}\right)=\mathrm{16}{x}−\frac{\mathrm{15}}{\mathrm{2}{x}\sqrt{{x}}}−\frac{\mathrm{5}}{{x}^{\mathrm{2}} }=\mathrm{16x}−\frac{\mathrm{15}}{\mathrm{2}}\mathrm{x}^{−\mathrm{3}/\mathrm{2}} −\mathrm{5x}^{−\mathrm{2}} \\ $$$${f}\:'\left(\mathrm{x}\right)=\mathrm{16}+\frac{\mathrm{45}}{\mathrm{4x}^{\mathrm{2}} \sqrt{\mathrm{x}}}+\frac{\mathrm{10}}{\mathrm{x}^{−\mathrm{3}} } \\ $$
Answered by floor(10²Eta[1]) last updated on 10/Jul/20
5+x^2 f(x)=16x^3 −((15(√x))/2)  f(x)=16x−((15)/2)x^(−3/2) −5x^(−2)   f′(x)=16+((45)/4)x^(−5/2) +10x^(−3)   f′(−2)=16+((45)/4)×(1/( (√((−2)^5 ))))+10×(1/((−2)^3 ))  =((59)/4)+((45)/(16i(√2)))
$$\mathrm{5}+\mathrm{x}^{\mathrm{2}} \mathrm{f}\left(\mathrm{x}\right)=\mathrm{16x}^{\mathrm{3}} −\frac{\mathrm{15}\sqrt{\mathrm{x}}}{\mathrm{2}} \\ $$$$\mathrm{f}\left(\mathrm{x}\right)=\mathrm{16x}−\frac{\mathrm{15}}{\mathrm{2}}\mathrm{x}^{−\mathrm{3}/\mathrm{2}} −\mathrm{5x}^{−\mathrm{2}} \\ $$$$\mathrm{f}'\left(\mathrm{x}\right)=\mathrm{16}+\frac{\mathrm{45}}{\mathrm{4}}\mathrm{x}^{−\mathrm{5}/\mathrm{2}} +\mathrm{10x}^{−\mathrm{3}} \\ $$$$\mathrm{f}'\left(−\mathrm{2}\right)=\mathrm{16}+\frac{\mathrm{45}}{\mathrm{4}}×\frac{\mathrm{1}}{\:\sqrt{\left(−\mathrm{2}\right)^{\mathrm{5}} }}+\mathrm{10}×\frac{\mathrm{1}}{\left(−\mathrm{2}\right)^{\mathrm{3}} } \\ $$$$=\frac{\mathrm{59}}{\mathrm{4}}+\frac{\mathrm{45}}{\mathrm{16i}\sqrt{\mathrm{2}}} \\ $$
Commented by bramlex last updated on 10/Jul/20
⌣•⌣•⌣
$$\smile\bullet\smile\bullet\smile \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *