Question Number 103001 by I want to learn more last updated on 12/Jul/20
Answered by ajfour last updated on 12/Jul/20
$${let}\:{new}\:{depth}\:{be}\:\boldsymbol{{y}}. \\ $$$$\boldsymbol{{V}}=\pi{R}^{\mathrm{2}} {H}=\pi{R}^{\mathrm{2}} \left({y}−\frac{{h}}{\mathrm{2}}\right)+\pi\left(\frac{{h}}{\mathrm{2}}\right)\left({R}^{\mathrm{2}} −{r}^{\mathrm{2}} \right) \\ $$$$\Rightarrow\:{H}={y}−\frac{{h}}{\mathrm{2}}+\frac{{h}}{\mathrm{2}}\left(\mathrm{1}−\frac{{r}^{\mathrm{2}} }{{R}^{\mathrm{2}} }\right) \\ $$$$\:\:\:\:\:\:\mathrm{6}={y}−\frac{\mathrm{9}}{\mathrm{2}}+\frac{\mathrm{9}}{\mathrm{2}}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{4}}\right) \\ $$$$\Rightarrow\:\:\:\:{y}=\mathrm{6}+\frac{\mathrm{9}}{\mathrm{8}}\:=\:\mathrm{7}.\mathrm{125}\:{m} \\ $$
Commented by I want to learn more last updated on 12/Jul/20
$$\mathrm{I}\:\mathrm{appreciate}\:\mathrm{sir} \\ $$
Commented by I want to learn more last updated on 12/Jul/20
$$\mathrm{Sir},\:\mathrm{sorry}\:\mathrm{to}\:\mathrm{disturb}.\:\mathrm{Can}\:\mathrm{you}\:\mathrm{show}\:\mathrm{me}\:\mathrm{how}\:\mathrm{the} \\ $$$$\mathrm{formular}\:\mathrm{is}\:\mathrm{derived}?.\:\:\mathrm{Thanks}\:\mathrm{sir}. \\ $$
Commented by ajfour last updated on 12/Jul/20
$${Do}\:{you}\:{have}\:{the}\:{answer},\:{is}\:{it} \\ $$$${correct}? \\ $$
Commented by I want to learn more last updated on 12/Jul/20
$$\mathrm{I}\:\mathrm{did}\:\mathrm{not}\:\mathrm{have}\:\mathrm{the}\:\mathrm{answer}\:\mathrm{sir}.\:\mathrm{But}\:\mathrm{i}\:\mathrm{will}\:\mathrm{go}\:\mathrm{with}\:\mathrm{your}\:\mathrm{work}\:\mathrm{sir}. \\ $$
Commented by mr W last updated on 12/Jul/20
$${answer}\:{correct}! \\ $$
Answered by mr W last updated on 12/Jul/20
Commented by mr W last updated on 12/Jul/20
$${volume}\:{of}\:{water}\:{in}\:{tank}: \\ $$$${V}=\pi{R}^{\mathrm{2}} {h}_{\mathrm{1}} \:{with}\:{R}=\mathrm{12}{m},\:{h}_{\mathrm{1}} =\mathrm{6}{m} \\ $$$${volume}\:{of}\:{wooden}\:{rod}: \\ $$$${V}_{{w}} =\pi{r}^{\mathrm{2}} {H}\:{with}\:{r}=\mathrm{6}{m},\:{H}=\mathrm{9}{m} \\ $$$$ \\ $$$${half}\:{of}\:{wooden}\:{rod}\:{is}\:{in}\:{water}: \\ $$$$\pi{R}^{\mathrm{2}} {h}_{\mathrm{2}} ={V}+\frac{{V}_{{w}} }{\mathrm{2}} \\ $$$$\pi{R}^{\mathrm{2}} {h}_{\mathrm{2}} =\pi{R}^{\mathrm{2}} {h}_{\mathrm{1}} +\frac{\pi{r}^{\mathrm{2}} {H}}{\mathrm{2}} \\ $$$$\Rightarrow{h}_{\mathrm{2}} ={h}_{\mathrm{1}} +\frac{{Hr}^{\mathrm{2}} }{\mathrm{2}{R}^{\mathrm{2}} }=\mathrm{6}+\frac{\mathrm{9}}{\mathrm{2}}\left(\frac{\mathrm{6}}{\mathrm{12}}\right)^{\mathrm{2}} =\mathrm{7}.\mathrm{125}\:{m} \\ $$
Commented by I want to learn more last updated on 12/Jul/20
$$\mathrm{Wow},\:\mathrm{thanks}\:\mathrm{sir}\:\mathrm{for}\:\mathrm{confirmation}. \\ $$