Question Number 103147 by ajfour last updated on 13/Jul/20
Answered by mr W last updated on 13/Jul/20
$${A}\left({a},\mathrm{0}\right) \\ $$$${B}\left(\mathrm{0},\sqrt{{p}^{\mathrm{2}} −{a}^{\mathrm{2}} }\right) \\ $$$${C}\left(\mathrm{0},{c}\right) \\ $$$${D}\left(\sqrt{{q}^{\mathrm{2}} −{c}^{\mathrm{2}} },\mathrm{0}\right) \\ $$$${a}\sqrt{{p}^{\mathrm{2}} −{a}^{\mathrm{2}} }={c}\sqrt{{q}^{\mathrm{2}} −{c}^{\mathrm{2}} }\:\:\:…\left({i}\right) \\ $$$${intersection}\:{AB}\:{and}\:{CD}\:{at}\:\left({h},{k}\right) \\ $$$$\frac{{h}}{{a}}+\frac{{k}}{\:\sqrt{{p}^{\mathrm{2}} −{a}^{\mathrm{2}} }}=\mathrm{1} \\ $$$$\frac{{h}}{\:\sqrt{{q}^{\mathrm{2}} −{c}^{\mathrm{2}} }}+\frac{{k}}{{c}}=\mathrm{1} \\ $$$$\left(\frac{\mathrm{1}}{{ac}}−\frac{\mathrm{1}}{\:\sqrt{\left({p}^{\mathrm{2}} −{a}^{\mathrm{2}} \right)\left({q}^{\mathrm{2}} −{c}^{\mathrm{2}} \right)}}\right){h}=\frac{\mathrm{1}}{{c}}−\frac{\mathrm{1}}{\:\sqrt{{p}^{\mathrm{2}} −{a}^{\mathrm{2}} }} \\ $$$$\Rightarrow{h}=\frac{\frac{\mathrm{1}}{{c}}−\frac{\mathrm{1}}{\:\sqrt{{p}^{\mathrm{2}} −{a}^{\mathrm{2}} }}}{\frac{\mathrm{1}}{{ac}}−\frac{\mathrm{1}}{\:\sqrt{\left({p}^{\mathrm{2}} −{a}^{\mathrm{2}} \right)\left({q}^{\mathrm{2}} −{c}^{\mathrm{2}} \right)}}} \\ $$$$\left({c}−\sqrt{{p}^{\mathrm{2}} −{a}^{\mathrm{2}} }\right){h}=\frac{\mathrm{1}}{\mathrm{2}}{c}\sqrt{{q}^{\mathrm{2}} −{c}^{\mathrm{2}} } \\ $$$$\Rightarrow\left({c}−\sqrt{{p}^{\mathrm{2}} −{a}^{\mathrm{2}} }\right)\frac{\frac{\mathrm{1}}{{c}}−\frac{\mathrm{1}}{\:\sqrt{{p}^{\mathrm{2}} −{a}^{\mathrm{2}} }}}{\frac{\mathrm{1}}{{ac}}−\frac{\mathrm{1}}{\:\sqrt{\left({p}^{\mathrm{2}} −{a}^{\mathrm{2}} \right)\left({q}^{\mathrm{2}} −{c}^{\mathrm{2}} \right)}}}=\frac{\mathrm{1}}{\mathrm{2}}{c}\sqrt{{q}^{\mathrm{2}} −{c}^{\mathrm{2}} }\:\:\:…\left({ii}\right) \\ $$$${from}\:\left({i}\right): \\ $$$${c}^{\mathrm{4}} −{q}^{\mathrm{2}} {c}^{\mathrm{2}} +{a}^{\mathrm{2}} \left({p}^{\mathrm{2}} −{a}^{\mathrm{2}} \right)=\mathrm{0} \\ $$$${c}^{\mathrm{2}} =\frac{{q}^{\mathrm{2}} +\sqrt{{q}^{\mathrm{4}} −\mathrm{4}{a}^{\mathrm{2}} \left({p}^{\mathrm{2}} −{a}^{\mathrm{2}} \right)}}{\mathrm{2}} \\ $$$${c}=\sqrt{\frac{{q}^{\mathrm{2}} +\sqrt{{q}^{\mathrm{4}} −\mathrm{4}{a}^{\mathrm{2}} \left({p}^{\mathrm{2}} −{a}^{\mathrm{2}} \right)}}{\mathrm{2}}} \\ $$$${put}\:{this}\:{into}\:\left({ii}\right)\:{to}\:{find}\:{a}… \\ $$
Commented by mr W last updated on 13/Jul/20
Commented by ajfour last updated on 13/Jul/20
$${Thanks}\:{Sir},\:{but}\:{i}\:{think},\:{i}\:{am}\:{able} \\ $$$${to}\:{find}\:{the}\:{exact}\:{expression}, \\ $$$${kindly}\:{check}\:{the}\:{same}.. \\ $$
Answered by ajfour last updated on 13/Jul/20
$${let}\:\angle{OAB}=\theta\:\:;\:\:\angle{OCD}=\phi \\ $$$${A}_{\mathrm{1}} ={A}_{\mathrm{2}} ={A}_{\mathrm{3}} =\bigtriangleup \\ $$$$\mathrm{4}\bigtriangleup={p}^{\mathrm{2}} \mathrm{sin}\:\theta\mathrm{cos}\:\theta={q}^{\mathrm{2}} \mathrm{sin}\:\phi\mathrm{cos}\:\phi\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:……\left({i}\right) \\ $$$${Let}\:\:{P}\:\:{be}\:{point}\:{of}\:{intersection}\:{of} \\ $$$${AB}\:{and}\:{CD}. \\ $$$${Also}\:\:{say}\:\:{AP}\:=\:{r}\:\:,\:\:{CP}\:=\:{s} \\ $$$${OD}={q}\mathrm{sin}\:\phi\:,\:\:\:{OB}={p}\mathrm{sin}\:\theta \\ $$$$\mathrm{2}\bigtriangleup=\left({p}\mathrm{cos}\:\theta−{q}\mathrm{sin}\:\phi\right)\left({r}\mathrm{sin}\:\theta\right)\:\:..\left({ii}\right) \\ $$$$\mathrm{2}\bigtriangleup=\left({q}\mathrm{cos}\:\phi−{p}\mathrm{sin}\:\theta\right)\left({s}\mathrm{sin}\:\phi\right)\:\:..\left({iii}\right) \\ $$$$\mathrm{2}\bigtriangleup=\left({q}\mathrm{sin}\:\phi\right)\left({r}\mathrm{sin}\:\theta\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\left({p}\mathrm{sin}\:\theta\right)\left({s}\mathrm{sin}\:\phi\right)\:\:\:\:…\left({iv}\right) \\ $$$${using}\:\left({ii}\right),\:\left({iii}\right)\:{in}\:\left({iv}\right) \\ $$$$\frac{{q}\mathrm{sin}\:\phi}{{p}\mathrm{cos}\:\theta−{q}\mathrm{sin}\:\phi}+\frac{{p}\mathrm{sin}\:\theta}{{q}\mathrm{cos}\:\phi−{p}\mathrm{sin}\:\theta}=\mathrm{1} \\ $$$$\Rightarrow\:\:\frac{\mathrm{1}}{\left(\frac{{p}\mathrm{cos}\:\theta}{{q}\mathrm{sin}\:\phi}\right)−\mathrm{1}}+\frac{\mathrm{1}}{\left(\frac{{q}\mathrm{cos}\:\phi}{{p}\mathrm{sin}\:\theta}\right)−\mathrm{1}}=\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$${And}\:{from}\:\left({i}\right)\:\: \\ $$$$\:\:\:\:\:\:\:\:\frac{{q}\mathrm{cos}\:\phi}{{p}\mathrm{sin}\:\theta}=\frac{{p}\mathrm{cos}\:\theta}{{q}\mathrm{sin}\:\phi}\:=\:{R}\:\:\:\:\:\:….\left({I}\right) \\ $$$${So}\:\:\:\:\:\frac{\mathrm{1}}{{R}−\mathrm{1}}+\frac{\mathrm{1}}{{R}−\mathrm{1}}=\mathrm{1} \\ $$$$\Rightarrow\:\:\:\:\:{R}−\mathrm{1}=\mathrm{2}\:\:\:\:\Rightarrow\:\:\:{R}=\mathrm{3} \\ $$$${hence}\:\:\:{q}\:\mathrm{cos}\:\phi=\mathrm{3}{p}\mathrm{sin}\:\theta \\ $$$${q}\mathrm{sin}\:\phi=\sqrt{{q}^{\mathrm{2}} −\mathrm{9}{p}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \theta} \\ $$$${substituting}\:{this}\:{in}\:\left({I}\right): \\ $$$$\:\Rightarrow\:\:\:\frac{{p}\mathrm{cos}\:\theta}{\:\sqrt{{q}^{\mathrm{2}} −\mathrm{9}{p}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \theta}}=\mathrm{3} \\ $$$$\Rightarrow\:\:{p}^{\mathrm{2}} \mathrm{cos}\:^{\mathrm{2}} \theta=\mathrm{9}{q}^{\mathrm{2}} −\mathrm{81}{p}^{\mathrm{2}} \left(\mathrm{1}−\mathrm{cos}\:^{\mathrm{2}} \theta\right) \\ $$$$\Rightarrow\:\:\:{p}^{\mathrm{2}} \mathrm{cos}\:^{\mathrm{2}} \theta\:=\:\frac{\mathrm{81}{p}^{\mathrm{2}} −\mathrm{9}{q}^{\mathrm{2}} }{\mathrm{80}} \\ $$$$\&\:\:\:\:\:{q}^{\mathrm{2}} \mathrm{cos}\:^{\mathrm{2}} \phi=\mathrm{9}\left({p}^{\mathrm{2}} −{p}^{\mathrm{2}} \mathrm{cos}\:^{\mathrm{2}} \theta\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\mathrm{9}\left({p}^{\mathrm{2}} −\frac{\mathrm{81}{p}^{\mathrm{2}} −\mathrm{9}{q}^{\mathrm{2}} }{\mathrm{80}}\right) \\ $$$$\Rightarrow\:\:\:\:{q}^{\mathrm{2}} \mathrm{cos}\:^{\mathrm{2}} \phi\:=\:\frac{\mathrm{81}{q}^{\mathrm{2}} −\mathrm{9}{p}^{\mathrm{2}} }{\mathrm{80}} \\ $$$${AC}^{\:\mathrm{2}} =\:{p}^{\mathrm{2}} \mathrm{cos}\:^{\mathrm{2}} \theta+{q}^{\mathrm{2}} \mathrm{cos}\:^{\mathrm{2}} \phi \\ $$$$\Rightarrow\:\:{AC}\:^{\mathrm{2}} =\frac{\mathrm{9}}{\mathrm{10}}\left({p}^{\mathrm{2}} +{q}^{\mathrm{2}} \right) \\ $$$$\:\:\:\:\:\:\:{AC}\:=\:\mathrm{3}\sqrt{\frac{{p}^{\mathrm{2}} +{q}^{\mathrm{2}} }{\mathrm{10}}}\:. \\ $$$${eg}.\:\:{p}=\mathrm{5}\:,\:{q}=\mathrm{4} \\ $$$${AC}=\mathrm{3}\sqrt{\frac{\mathrm{25}+\mathrm{16}}{\mathrm{10}}}\:=\:\mathrm{3}\sqrt{\frac{\mathrm{41}}{\mathrm{10}}} \\ $$$$\:\:{p}\mathrm{cos}\:\theta=\frac{\mathrm{3}}{\mathrm{4}}\sqrt{\frac{\mathrm{9}{p}^{\mathrm{2}} −{q}^{\mathrm{2}} }{\mathrm{5}}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\frac{\mathrm{3}}{\mathrm{4}}\sqrt{\frac{\mathrm{225}−\mathrm{16}}{\mathrm{5}}}\:=\:\frac{\mathrm{3}}{\mathrm{4}}\sqrt{\frac{\mathrm{209}}{\mathrm{5}}} \\ $$$$\:\:{p}\mathrm{sin}\:\theta=\sqrt{\mathrm{25}−\frac{\mathrm{9}×\mathrm{209}}{\mathrm{80}}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\frac{\mathrm{1}}{\mathrm{4}}\sqrt{\frac{\mathrm{119}}{\mathrm{5}}} \\ $$$$\:\:{q}\mathrm{cos}\:\phi\:=\:\frac{\mathrm{3}}{\mathrm{4}}\sqrt{\frac{\mathrm{9}{q}^{\mathrm{2}} −{p}^{\mathrm{2}} }{\mathrm{5}}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\:\frac{\mathrm{3}}{\mathrm{4}}\sqrt{\frac{\mathrm{144}−\mathrm{25}}{\mathrm{5}}}\:=\frac{\mathrm{3}}{\mathrm{4}}\sqrt{\frac{\mathrm{119}}{\mathrm{5}}} \\ $$$$\:{q}\mathrm{sin}\:\phi\:=\:\sqrt{\mathrm{16}−\frac{\mathrm{9}×\mathrm{119}}{\mathrm{80}}}\:=\frac{\mathrm{1}}{\mathrm{4}}\sqrt{\frac{\mathrm{209}}{\mathrm{5}}} \\ $$$${I}\:{shall}\:{try}\:{to}\:{graph}\:{it}… \\ $$$$ \\ $$
Commented by ajfour last updated on 13/Jul/20
Commented by mr W last updated on 13/Jul/20
$${fantastically}\:{solved}! \\ $$