Menu Close

Question-103165




Question Number 103165 by ajfour last updated on 13/Jul/20
Commented by ajfour last updated on 13/Jul/20
If outer circle has unit radius,  find side of the equilateral △.  P, Q,R are centres of the   smaller circles. Also find α.
$${If}\:{outer}\:{circle}\:{has}\:{unit}\:{radius}, \\ $$$${find}\:{side}\:{of}\:{the}\:{equilateral}\:\bigtriangleup. \\ $$$${P},\:{Q},{R}\:{are}\:{centres}\:{of}\:{the}\: \\ $$$${smaller}\:{circles}.\:{Also}\:{find}\:\alpha. \\ $$
Commented by mr W last updated on 13/Jul/20
radius of small circles=r  (2/3)×(√3)r+r=1  ⇒r=2(√3)−3  α=30°  s=((2r)/( (√3)))+((2×2r)/( (√3)))=2(√3)r=6(2−(√3))
$${radius}\:{of}\:{small}\:{circles}={r} \\ $$$$\frac{\mathrm{2}}{\mathrm{3}}×\sqrt{\mathrm{3}}{r}+{r}=\mathrm{1} \\ $$$$\Rightarrow{r}=\mathrm{2}\sqrt{\mathrm{3}}−\mathrm{3} \\ $$$$\alpha=\mathrm{30}° \\ $$$${s}=\frac{\mathrm{2}{r}}{\:\sqrt{\mathrm{3}}}+\frac{\mathrm{2}×\mathrm{2}{r}}{\:\sqrt{\mathrm{3}}}=\mathrm{2}\sqrt{\mathrm{3}}{r}=\mathrm{6}\left(\mathrm{2}−\sqrt{\mathrm{3}}\right) \\ $$
Commented by ajfour last updated on 13/Jul/20
Excellent Sir, understood,  thanks a lot!
$${Excellent}\:{Sir},\:{understood}, \\ $$$${thanks}\:{a}\:{lot}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *