Menu Close

Question-103179




Question Number 103179 by ajfour last updated on 13/Jul/20
Commented by ajfour last updated on 13/Jul/20
If D and E are midpoints of   sides AC and AB  respectively,  of △ABC , find         ((blue area)/(area △ABC))    in terms of    sides a, b, c of the △.
$${If}\:{D}\:{and}\:{E}\:{are}\:{midpoints}\:{of}\: \\ $$$${sides}\:{AC}\:{and}\:{AB}\:\:{respectively}, \\ $$$${of}\:\bigtriangleup{ABC}\:,\:{find}\: \\ $$$$\:\:\:\:\:\:\frac{{blue}\:{area}}{{area}\:\bigtriangleup{ABC}}\:\:\:\:{in}\:{terms}\:{of}\: \\ $$$$\:{sides}\:{a},\:{b},\:{c}\:{of}\:{the}\:\bigtriangleup. \\ $$
Answered by ajfour last updated on 13/Jul/20
Let B is origin. C(0,a)  A(h,k)     h=csin B ,  k=bsin C  D(((a+h)/2), (k/2))   ;  E((h/2), (k/2)) ;  Eq. of CF:    y=−(h/k)(x−a)  Eq. of BG:  y=(((a−h)/k))x  Eq. of ⊥ on AB through E :     y−(k/2)=−((h/k))(x−(h/2))  Eq. of ⊥ on AC through D :    y−(k/2)=(((a−h)/k))(x−((a+h)/2))  ......
$${Let}\:{B}\:{is}\:{origin}.\:{C}\left(\mathrm{0},{a}\right) \\ $$$${A}\left({h},{k}\right)\:\:\:\:\:{h}={c}\mathrm{sin}\:{B}\:,\:\:{k}={b}\mathrm{sin}\:{C} \\ $$$${D}\left(\frac{{a}+{h}}{\mathrm{2}},\:\frac{{k}}{\mathrm{2}}\right)\:\:\:;\:\:{E}\left(\frac{{h}}{\mathrm{2}},\:\frac{{k}}{\mathrm{2}}\right)\:; \\ $$$${Eq}.\:{of}\:{CF}:\:\:\:\:{y}=−\frac{{h}}{{k}}\left({x}−{a}\right) \\ $$$${Eq}.\:{of}\:{BG}:\:\:{y}=\left(\frac{{a}−{h}}{{k}}\right){x} \\ $$$${Eq}.\:{of}\:\bot\:{on}\:{AB}\:{through}\:{E}\:: \\ $$$$\:\:\:{y}−\frac{{k}}{\mathrm{2}}=−\left(\frac{{h}}{{k}}\right)\left({x}−\frac{{h}}{\mathrm{2}}\right) \\ $$$${Eq}.\:{of}\:\bot\:{on}\:{AC}\:{through}\:{D}\:: \\ $$$$\:\:{y}−\frac{{k}}{\mathrm{2}}=\left(\frac{{a}−{h}}{{k}}\right)\left({x}−\frac{{a}+{h}}{\mathrm{2}}\right) \\ $$$$…… \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *