Question Number 103553 by byaw last updated on 15/Jul/20
Answered by mathmax by abdo last updated on 16/Jul/20
$$\mathrm{2y}^{''} −\mathrm{4y}^{'} −\mathrm{6y}\:=\mathrm{0}\:\Rightarrow\mathrm{y}^{''} −\mathrm{2y}^{'} \:−\mathrm{3y}\:=\mathrm{0} \\ $$$$\rightarrow\mathrm{r}^{\mathrm{2}} −\mathrm{2r}\:+\mathrm{3}\:=\mathrm{0}\:\rightarrow\Delta^{'} \:=\mathrm{1}+\mathrm{3}\:=\mathrm{4}\:\Rightarrow\mathrm{r}_{\mathrm{1}} =\mathrm{1}+\mathrm{2}\:=\mathrm{3}\:\mathrm{and}\:\mathrm{r}_{\mathrm{2}} =\mathrm{1}−\mathrm{2}\:=−\mathrm{1}\:\Rightarrow \\ $$$$\mathrm{y}\:=\alpha\:\mathrm{e}^{−\mathrm{x}} \:+\beta\mathrm{e}^{\mathrm{3x}} \\ $$$$\mathrm{y}\left(\mathrm{o}\right)=\mathrm{3}\:\Rightarrow\alpha+\beta\:=\mathrm{3} \\ $$$$\mathrm{y}^{'} \:=−\alpha\:\mathrm{e}^{−\mathrm{x}} \:+\mathrm{3}\beta\:\mathrm{e}^{\mathrm{3x}} \:\mathrm{so}\:\mathrm{y}^{'} \left(\mathrm{0}\right)\:=\mathrm{4}\:\Rightarrow−\alpha+\mathrm{3}\beta\:=\mathrm{4}\:\mathrm{we}\:\mathrm{get}\:\mathrm{the}\:\mathrm{system} \\ $$$$\begin{cases}{\alpha+\beta\:=\mathrm{3}}\\{−\alpha+\mathrm{3}\beta\:=\mathrm{4}\:\Rightarrow\mathrm{4}\beta\:=\mathrm{7}\:\Rightarrow\beta\:=\frac{\mathrm{7}}{\mathrm{4}}}\end{cases} \\ $$$$\alpha=\mathrm{3}−\beta\:=\mathrm{3}−\frac{\mathrm{7}}{\mathrm{4}}\:=\frac{\mathrm{5}}{\mathrm{4}}\:\Rightarrow\mathrm{y}\left(\mathrm{x}\right)\:=\frac{\mathrm{5}}{\mathrm{4}}\mathrm{e}^{−\mathrm{x}} +\frac{\mathrm{7}}{\mathrm{4}}\mathrm{e}^{\mathrm{3x}} \\ $$
Answered by bobhans last updated on 16/Jul/20
$$\left(\mathrm{3}\right)\:\frac{\partial{M}}{\partial{y}}\:=\:−\frac{{x}}{{y}^{\mathrm{2}} }.{e}^{{x}/{y}} \:\: \\ $$$$\frac{\partial{N}}{\partial{x}}\:=\:\frac{\mathrm{1}}{{y}}{e}^{{x}/{y}} \left(\mathrm{1}−\frac{{x}}{{y}}\right)−\frac{\mathrm{1}}{{y}}.{e}^{{x}/{y}} \:=\:−\frac{{x}}{{y}^{\mathrm{2}} }.{e}^{{x}/{y}} \\ $$$${because}\:\frac{\partial{M}}{\partial{y}}\:=\:\frac{\partial{N}}{\partial{x}}\:{so}\:{this}\:{is}\:{exact}\:{diff} \\ $$$${equation} \\ $$
Commented by byaw last updated on 16/Jul/20
$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{soo}\:\mathrm{much}. \\ $$
Answered by Dwaipayan Shikari last updated on 16/Jul/20
$$\frac{{dy}}{{dx}}=\frac{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }{\mathrm{2}{xy}} \\ $$$$\frac{{dy}}{{dx}}=\frac{{v}^{\mathrm{2}} +\mathrm{1}}{\mathrm{2}{v}}\:\:\:\:\:\left[{vy}={x}\:\:\:,\frac{{dy}}{{dx}}{v}+\frac{{dv}}{{dx}}{y}\right. \\ $$$$\frac{{dv}}{{dx}}.{y}=\frac{{v}^{\mathrm{2}} +\mathrm{1}}{\mathrm{2}} \\ $$$$\frac{{dv}}{{dx}}.\frac{{x}}{{v}}=\frac{{v}^{\mathrm{2}} +\mathrm{1}}{\mathrm{2}} \\ $$$$\frac{\mathrm{2}{dv}}{{v}\left({v}^{\mathrm{2}} +\mathrm{1}\right)}=\frac{{dx}}{{x}} \\ $$$$−\int\frac{−\frac{\mathrm{2}}{{v}^{\mathrm{3}} }}{\mathrm{1}+\frac{\mathrm{1}}{{v}^{\mathrm{2}} }}{dv}={logx}+{C} \\ $$$$−{log}\left(\mathrm{1}+\frac{\mathrm{1}}{{v}^{\mathrm{2}} }\right)={logx}+{C} \\ $$$$\mathrm{2}{logv}−{log}\left({v}^{\mathrm{2}} +\mathrm{1}\right)={logx}+{C} \\ $$$$\mathrm{2}{logx}−\mathrm{2}{logy}−{log}\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)+\mathrm{2}{logy}={logx}+{logC}_{\mathrm{1}} \\ $$$${log}\left(\frac{{x}}{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }.\frac{\mathrm{1}}{{C}_{\mathrm{1}} }\right)=\mathrm{0} \\ $$$${x}={C}_{\mathrm{1}} \left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right) \\ $$$$ \\ $$
Commented by byaw last updated on 16/Jul/20
$$\mathrm{Thank}\:\mathrm{you}.\:\mathrm{I}\:\mathrm{am}\:\mathrm{greatful} \\ $$