Menu Close

Question-103582




Question Number 103582 by aurpeyz last updated on 15/Jul/20
Commented by mr W last updated on 16/Jul/20
no unique solution possible!
$${no}\:{unique}\:{solution}\:{possible}! \\ $$
Commented by mr W last updated on 16/Jul/20
Commented by mr W last updated on 16/Jul/20
T_1 cos α−T_2 cos β=0  T_1 sin α+T_2 sin β=(10+25)g=350  ⇒T_1 =((350 cos β)/(sin (α+β)))  ⇒T_2 =((350 cos α)/(sin (α+β)))  that means you can get any value for  T_1  and T_2  by selecting certain α and  β.
$${T}_{\mathrm{1}} \mathrm{cos}\:\alpha−{T}_{\mathrm{2}} \mathrm{cos}\:\beta=\mathrm{0} \\ $$$${T}_{\mathrm{1}} \mathrm{sin}\:\alpha+{T}_{\mathrm{2}} \mathrm{sin}\:\beta=\left(\mathrm{10}+\mathrm{25}\right){g}=\mathrm{350} \\ $$$$\Rightarrow{T}_{\mathrm{1}} =\frac{\mathrm{350}\:\mathrm{cos}\:\beta}{\mathrm{sin}\:\left(\alpha+\beta\right)} \\ $$$$\Rightarrow{T}_{\mathrm{2}} =\frac{\mathrm{350}\:\mathrm{cos}\:\alpha}{\mathrm{sin}\:\left(\alpha+\beta\right)} \\ $$$${that}\:{means}\:{you}\:{can}\:{get}\:{any}\:{value}\:{for} \\ $$$${T}_{\mathrm{1}} \:{and}\:{T}_{\mathrm{2}} \:{by}\:{selecting}\:{certain}\:\alpha\:{and} \\ $$$$\beta. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *