Menu Close

Question-104364




Question Number 104364 by ajfour last updated on 21/Jul/20
Commented by ajfour last updated on 21/Jul/20
Find the area of the △CGI ;  C is circumcentre of △PQR,  G its centroid and I its incentre.
$${Find}\:{the}\:{area}\:{of}\:{the}\:\bigtriangleup{CGI}\:; \\ $$$${C}\:{is}\:{circumcentre}\:{of}\:\bigtriangleup{PQR}, \\ $$$${G}\:{its}\:{centroid}\:{and}\:{I}\:{its}\:{incentre}. \\ $$
Answered by mr W last updated on 21/Jul/20
c=(√(a^2 +b^2 ))  radius of incircle r  (((a+b+c)r)/2)=((ab)/2)  ⇒r=((ab)/(a+b+c))  G((a/3),(b/3))  I(r,r)  C((a/2),(b/2))  A_(ΔGCI) =(1/2)∣ determinant ((((a/2)−(a/3)),((b/2)−(b/3))),(((a/2)−r),((b/2)−r)))∣  =(1/2)∣[(a/6)((b/2)−r)−(b/6)((a/2)−r)]∣  =((ab∣a−b∣)/(12(a+b+(√(a^2 +b^2 )))))
$${c}=\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} } \\ $$$${radius}\:{of}\:{incircle}\:{r} \\ $$$$\frac{\left({a}+{b}+{c}\right){r}}{\mathrm{2}}=\frac{{ab}}{\mathrm{2}} \\ $$$$\Rightarrow{r}=\frac{{ab}}{{a}+{b}+{c}} \\ $$$${G}\left(\frac{{a}}{\mathrm{3}},\frac{{b}}{\mathrm{3}}\right) \\ $$$${I}\left({r},{r}\right) \\ $$$${C}\left(\frac{{a}}{\mathrm{2}},\frac{{b}}{\mathrm{2}}\right) \\ $$$${A}_{\Delta{GCI}} =\frac{\mathrm{1}}{\mathrm{2}}\mid\begin{vmatrix}{\frac{{a}}{\mathrm{2}}−\frac{{a}}{\mathrm{3}}}&{\frac{{b}}{\mathrm{2}}−\frac{{b}}{\mathrm{3}}}\\{\frac{{a}}{\mathrm{2}}−{r}}&{\frac{{b}}{\mathrm{2}}−{r}}\end{vmatrix}\mid \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\mid\left[\frac{{a}}{\mathrm{6}}\left(\frac{{b}}{\mathrm{2}}−{r}\right)−\frac{{b}}{\mathrm{6}}\left(\frac{{a}}{\mathrm{2}}−{r}\right)\right]\mid \\ $$$$=\frac{{ab}\mid{a}−{b}\mid}{\mathrm{12}\left({a}+{b}+\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }\right)} \\ $$
Commented by mr W last updated on 21/Jul/20
yes, thanks!
$${yes},\:{thanks}! \\ $$
Commented by ajfour last updated on 21/Jul/20
sir  please check , i think    A_(△CGI)  = (((b−a)r)/(12))
$${sir}\:\:{please}\:{check}\:,\:{i}\:{think} \\ $$$$\:\:{A}_{\bigtriangleup{CGI}} \:=\:\frac{\left({b}−{a}\right){r}}{\mathrm{12}} \\ $$
Answered by ajfour last updated on 21/Jul/20
let Q be origin.  R(a,0) ;  P(0,b)    x_I  =((ax_1 +bx_2 +cx_3 )/(a+b+c))       = ((a×0+b×a+c×0)/(a+b+c)) =((ab)/(a+b+c))  y_I  = ((ay_1 +by_2 +cy_3 )/(a+b+c)) = ((ab)/(a+b+c))    G((a/3),(b/3))   ;  C((a/2),(b/2))  Area △CGI =(1/2) determinant (((a/2),(b/2),1),((a/3),(b/3),1),(((ab)/(a+b+c)),((ab)/(a+b+c)),1))     =(1/2){ (a/2)((b/3)−r)−(b/2)((a/3)−r)                             +r((a/3)−(b/3))}     = (r/2)((b/6)−(a/6)) = ((r(b−a))/(12))   △_(CGI)  = ((ab(b−a))/(12(a+b+(√(a^2 +b^2 ))))) ★
$${let}\:{Q}\:{be}\:{origin}. \\ $$$${R}\left({a},\mathrm{0}\right)\:;\:\:{P}\left(\mathrm{0},{b}\right)\:\: \\ $$$${x}_{{I}} \:=\frac{{ax}_{\mathrm{1}} +{bx}_{\mathrm{2}} +{cx}_{\mathrm{3}} }{{a}+{b}+{c}}\: \\ $$$$\:\:\:\:=\:\frac{{a}×\mathrm{0}+{b}×{a}+{c}×\mathrm{0}}{{a}+{b}+{c}}\:=\frac{{ab}}{{a}+{b}+{c}} \\ $$$${y}_{{I}} \:=\:\frac{{ay}_{\mathrm{1}} +{by}_{\mathrm{2}} +{cy}_{\mathrm{3}} }{{a}+{b}+{c}}\:=\:\frac{{ab}}{{a}+{b}+{c}} \\ $$$$\:\:{G}\left(\frac{{a}}{\mathrm{3}},\frac{{b}}{\mathrm{3}}\right)\:\:\:;\:\:{C}\left(\frac{{a}}{\mathrm{2}},\frac{{b}}{\mathrm{2}}\right) \\ $$$${Area}\:\bigtriangleup{CGI}\:=\frac{\mathrm{1}}{\mathrm{2}}\begin{vmatrix}{\frac{{a}}{\mathrm{2}}}&{\frac{{b}}{\mathrm{2}}}&{\mathrm{1}}\\{\frac{{a}}{\mathrm{3}}}&{\frac{{b}}{\mathrm{3}}}&{\mathrm{1}}\\{\frac{{ab}}{{a}+{b}+{c}}}&{\frac{{ab}}{{a}+{b}+{c}}}&{\mathrm{1}}\end{vmatrix} \\ $$$$\:\:\:=\frac{\mathrm{1}}{\mathrm{2}}\left\{\:\frac{{a}}{\mathrm{2}}\left(\frac{{b}}{\mathrm{3}}−{r}\right)−\frac{{b}}{\mathrm{2}}\left(\frac{{a}}{\mathrm{3}}−{r}\right)\right. \\ $$$$\left.\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+{r}\left(\frac{{a}}{\mathrm{3}}−\frac{{b}}{\mathrm{3}}\right)\right\} \\ $$$$\:\:\:=\:\frac{{r}}{\mathrm{2}}\left(\frac{{b}}{\mathrm{6}}−\frac{{a}}{\mathrm{6}}\right)\:=\:\frac{{r}\left({b}−{a}\right)}{\mathrm{12}} \\ $$$$\:\bigtriangleup_{{CGI}} \:=\:\frac{{ab}\left({b}−{a}\right)}{\mathrm{12}\left({a}+{b}+\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }\right)}\:\bigstar \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *