Question Number 104984 by mathocean1 last updated on 25/Jul/20
Commented by mathocean1 last updated on 25/Jul/20
$${Here}\:{is}\:{the}\:{variation}\:{of}\:{f}\left({x}\right)\:{in} \\ $$$$\left[−\mathrm{3};\mathrm{2}\right].\:{the}\:{function}\:{g}\:{is}\:{such}\:{that} \\ $$$$\forall\:{x}\:\in\left[−\mathrm{3};\mathrm{2}\right]\:,\:{g}'\left({x}\right)=\frac{{f}\left({x}\right)}{{x}^{\mathrm{2}} }. \\ $$$${Choose}\:{the}\:{correct}\:{answer}\:{about} \\ $$$${the}\:{variation}\:{of}\:{g}: \\ $$$$\left.{a}\right){g}\:{is}\:{non}−{decreasing}\:{in}\:\left[−\mathrm{3};\mathrm{2}\right] \\ $$$$\left.{b}\right){g}\:{is}\:{descending}\:{in}\:\left[−\mathrm{3};\mathrm{2}\right] \\ $$$$\left.{c}\right){g}\:{is}\:{monotonous}\:{in}\:\left[−\mathrm{3};\mathrm{2}\right] \\ $$$$\left.{d}\right)\:{g}\:{is}\:{contant}\:{in}\:\left[−\mathrm{3};\mathrm{2}\right]. \\ $$$$ \\ $$$$\mathcal{P}{lease}\:{sirs}\:{detail}… \\ $$