Menu Close

Question-105265




Question Number 105265 by bemath last updated on 27/Jul/20
Answered by Cinezoidy1 last updated on 27/Jul/20
P(F_5 ∪V)=P(F_5 )+P(V)−P(F_5 ∩V)  P(F_5 ∩V)=((5letters)/(26))+((5vowels)/(26))−((2(a and e))/(26))  P(F_5 ∩V)=((8:2)/(26:2))  P(F_5 ∩V)=(4/(13))   :G
$${P}\left({F}_{\mathrm{5}} \cup{V}\right)={P}\left({F}_{\mathrm{5}} \right)+{P}\left({V}\right)−{P}\left({F}_{\mathrm{5}} \cap{V}\right) \\ $$$${P}\left({F}_{\mathrm{5}} \cap{V}\right)=\frac{\mathrm{5}{letters}}{\mathrm{26}}+\frac{\mathrm{5}{vowels}}{\mathrm{26}}−\frac{\mathrm{2}\left({a}\:{and}\:{e}\right)}{\mathrm{26}} \\ $$$${P}\left({F}_{\mathrm{5}} \cap{V}\right)=\frac{\mathrm{8}:\mathrm{2}}{\mathrm{26}:\mathrm{2}} \\ $$$${P}\left({F}_{\mathrm{5}} \cap{V}\right)=\frac{\mathrm{4}}{\mathrm{13}}\:\:\::{G} \\ $$
Answered by JDamian last updated on 27/Jul/20
G. (4/(13))
$${G}.\:\frac{\mathrm{4}}{\mathrm{13}} \\ $$
Commented by bemath last updated on 27/Jul/20
how?
$${how}? \\ $$
Answered by JDamian last updated on 27/Jul/20
The subset from alphabet is  {a, b, c, d, e, i, o, u}  i.e. 8 letters from 26    (8/(26)) = (4/(13))
$${The}\:{subset}\:{from}\:{alphabet}\:{is} \\ $$$$\left\{{a},\:{b},\:{c},\:{d},\:{e},\:{i},\:{o},\:{u}\right\} \\ $$$${i}.{e}.\:\mathrm{8}\:{letters}\:{from}\:\mathrm{26} \\ $$$$ \\ $$$$\frac{\mathrm{8}}{\mathrm{26}}\:=\:\frac{\mathrm{4}}{\mathrm{13}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *