Menu Close

Question-105273




Question Number 105273 by ajfour last updated on 27/Jul/20
Commented by ajfour last updated on 27/Jul/20
Given P(h,k)   and  B(p,q)  To find image I(r,t) of B(p,q)  in the mirror line AT.
$${Given}\:{P}\left({h},{k}\right)\:\:\:{and}\:\:{B}\left({p},{q}\right) \\ $$$${To}\:{find}\:{image}\:{I}\left({r},{t}\right)\:{of}\:{B}\left({p},{q}\right) \\ $$$${in}\:{the}\:{mirror}\:{line}\:{AT}. \\ $$
Answered by mr W last updated on 28/Jul/20
T(m,m^2 )  tan θ=((b−m^2 )/(a−m))=2m  m^2 −2am+b=0  ⇒m=a+(√(a^2 −b))  eqn. of AP:  y=b+2m(x−a)  ⇒2mx−y+b−2ma    image of B(p,q) is (r,t):  r=p−((4m(2mp−q+b−2ma))/(4m^2 +1))  t=q+((2(2mp−q+b−2ma))/(4m^2 +1))  image of P(h,k) is (f,g):  f=h−((4m(2mh−k+b−2ma))/(4m^2 +1))  g=k+((2(2mh−k+b−2ma))/(4m^2 +1))
$${T}\left({m},{m}^{\mathrm{2}} \right) \\ $$$$\mathrm{tan}\:\theta=\frac{{b}−{m}^{\mathrm{2}} }{{a}−{m}}=\mathrm{2}{m} \\ $$$${m}^{\mathrm{2}} −\mathrm{2}{am}+{b}=\mathrm{0} \\ $$$$\Rightarrow{m}={a}+\sqrt{{a}^{\mathrm{2}} −{b}} \\ $$$${eqn}.\:{of}\:{AP}: \\ $$$${y}={b}+\mathrm{2}{m}\left({x}−{a}\right) \\ $$$$\Rightarrow\mathrm{2}{mx}−{y}+{b}−\mathrm{2}{ma} \\ $$$$ \\ $$$${image}\:{of}\:{B}\left({p},{q}\right)\:{is}\:\left({r},{t}\right): \\ $$$${r}={p}−\frac{\mathrm{4}{m}\left(\mathrm{2}{mp}−{q}+{b}−\mathrm{2}{ma}\right)}{\mathrm{4}{m}^{\mathrm{2}} +\mathrm{1}} \\ $$$${t}={q}+\frac{\mathrm{2}\left(\mathrm{2}{mp}−{q}+{b}−\mathrm{2}{ma}\right)}{\mathrm{4}{m}^{\mathrm{2}} +\mathrm{1}} \\ $$$${image}\:{of}\:{P}\left({h},{k}\right)\:{is}\:\left({f},{g}\right): \\ $$$${f}={h}−\frac{\mathrm{4}{m}\left(\mathrm{2}{mh}−{k}+{b}−\mathrm{2}{ma}\right)}{\mathrm{4}{m}^{\mathrm{2}} +\mathrm{1}} \\ $$$${g}={k}+\frac{\mathrm{2}\left(\mathrm{2}{mh}−{k}+{b}−\mathrm{2}{ma}\right)}{\mathrm{4}{m}^{\mathrm{2}} +\mathrm{1}} \\ $$
Commented by mr W last updated on 28/Jul/20

Leave a Reply

Your email address will not be published. Required fields are marked *