Menu Close

Question-105380




Question Number 105380 by Skabetix last updated on 28/Jul/20
Commented by Skabetix last updated on 28/Jul/20
pls need help
plsneedhelp
Answered by 1549442205PVT last updated on 28/Jul/20
Apply Cauchy′s inequality for three  positive numners we get:  a^2 +ab+b^2 ≥3^3 (√(a^2 .ab.b^2 )) =3ab⇒log_c (a^2 +ab+b^2 )≥log_c (3ab)=log_c 3+log_c a+log_c b  Similarly,log_a (b^2 +bc+c^2 )≥log_a 3+log_a b+log_a c  log_b (c^2 +ca+a^2 )≥log_b 3+log_b c+log_b a  Adding up three above inequalities  we get:  LHS≥log_a 3+log_b 3+log_c 3+(log_a b+log_b a)+(log_b c+log_c b)+(log_c a+log_a c)  ≥log_a 3+log_b 3+log_c 3+6(1)(since log_x y+log_y x≥2(√(log_x y.log_y x ))=2 due to log_x y.log_y x=1)  From the hypothesis a.b.c=3 we get  1=log_3 3=log_3 (a.b.c)=log_3 a+log_3 b+log_3 c  Therefeore,apply the inequality (x+y+z)((1/x)+(1/y)+(1/z))≥9(x,y,z>0) we get:  log_a 3+log_b 3+log_c 3≥(9/(log_3 a+log_3 b+log_3 c))=9(2)  From the inequalities (1) and (2) we obtain:  LHS≥9+6=15(q.e.d)  The equality ocurrs if and only if  a=b=c=^3 (√3)
ApplyCauchysinequalityforthreepositivenumnersweget:a2+ab+b233a2.ab.b2=3ablogc(a2+ab+b2)logc(3ab)=logc3+logca+logcbSimilarly,loga(b2+bc+c2)loga3+logab+logaclogb(c2+ca+a2)logb3+logbc+logbaAddingupthreeaboveinequalitiesweget:LHSloga3+logb3+logc3+(logab+logba)+(logbc+logcb)+(logca+logac)loga3+logb3+logc3+6(1)(sincelogxy+logyx2logxy.logyx=2duetologxy.logyx=1)Fromthehypothesisa.b.c=3weget1=log33=log3(a.b.c)=log3a+log3b+log3cTherefeore,applytheinequality(x+y+z)(1x+1y+1z)9(x,y,z>0)weget:loga3+logb3+logc39log3a+log3b+log3c=9(2)Fromtheinequalities(1)and(2)weobtain:LHS9+6=15(q.e.d)Theequalityocurrsifandonlyifa=b=c=33

Leave a Reply

Your email address will not be published. Required fields are marked *