Menu Close

Question-105422




Question Number 105422 by ajfour last updated on 28/Jul/20
Commented by ajfour last updated on 28/Jul/20
Find radius of circle in terms of  a and b.
Findradiusofcircleintermsofaandb.
Answered by ajfour last updated on 28/Jul/20
let   A(a−acos θ, b+bsin θ)  slope of AC = m = −((asin θ)/(bcos θ))  Equations (i) & (ii):_(−)   x_C = a−acos θ−r(((bcos θ)/( (√(a^2 sin^2 θ+b^2 cos^2 θ)))))  y_C = b+bsin θ+r(((asin θ)/( (√(a^2 sin^2 θ+b^2 cos^2 θ)))))  Also   x_C  = r                            ....(iii)  And let   x_B =r+rcos φ       ...(iv)                     y_B = y_C +rsin φ     ....(v)   y_B = x_B ^2      ...(vi)    tan φ = (1/(2x_B ))   ..(vii)  ⇒   (1/(4tan^2 φ))= y_C +rsin φ  ⇒  (1/(4tan^2 φ))−rsin φ =        b+bsin θ+r(((asin θ)/( (√(a^2 sin^2 θ+b^2 cos^2 θ)))))  And from (iii):  r= a−acos θ−r(((bcos θ)/( (√(a^2 sin^2 θ+b^2 cos^2 θ)))))  And      (1/(2tan φ)) =r+rcos φ  ⇒    r=(1/(2tan φ(1+cos φ)))  .....
letA(aacosθ,b+bsinθ)slopeofAC=m=asinθbcosθEquations(i)&(ii):xC=aacosθr(bcosθa2sin2θ+b2cos2θ)yC=b+bsinθ+r(asinθa2sin2θ+b2cos2θ)AlsoxC=r.(iii)AndletxB=r+rcosϕ(iv)yB=yC+rsinϕ.(v)yB=xB2(vi)tanϕ=12xB..(vii)14tan2ϕ=yC+rsinϕ14tan2ϕrsinϕ=b+bsinθ+r(asinθa2sin2θ+b2cos2θ)Andfrom(iii):r=aacosθr(bcosθa2sin2θ+b2cos2θ)And12tanϕ=r+rcosϕr=12tanϕ(1+cosϕ)..

Leave a Reply

Your email address will not be published. Required fields are marked *