Menu Close

Question-105598




Question Number 105598 by mohammad17 last updated on 30/Jul/20
Answered by Aziztisffola last updated on 30/Jul/20
L{e^(ax) }=∫_0 ^( ∞) e^(−sx)  e^(ax)  dx=∫_0 ^( ∞) e^(−sx+ax)   dx  =∣(1/(a−s)) e^((a−s)x) ∣_0 ^(x→∞) =0−(1/(a−s)) =(1/(s−a)) (s>a)  Hence L{e^(ax) }=(1/(s−a))
$$\mathrm{L}\left\{\mathrm{e}^{\mathrm{ax}} \right\}=\int_{\mathrm{0}} ^{\:\infty} \mathrm{e}^{−\mathrm{sx}} \:\mathrm{e}^{\mathrm{ax}} \:\mathrm{dx}=\int_{\mathrm{0}} ^{\:\infty} \mathrm{e}^{−\mathrm{sx}+\mathrm{ax}} \:\:\mathrm{dx} \\ $$$$=\mid\frac{\mathrm{1}}{\mathrm{a}−\mathrm{s}}\:\mathrm{e}^{\left(\mathrm{a}−\mathrm{s}\right)\mathrm{x}} \mid_{\mathrm{0}} ^{\mathrm{x}\rightarrow\infty} =\mathrm{0}−\frac{\mathrm{1}}{\mathrm{a}−\mathrm{s}}\:=\frac{\mathrm{1}}{\mathrm{s}−\mathrm{a}}\:\left(\mathrm{s}>\mathrm{a}\right) \\ $$$$\mathrm{Hence}\:\mathrm{L}\left\{\mathrm{e}^{\mathrm{ax}} \right\}=\frac{\mathrm{1}}{\mathrm{s}−\mathrm{a}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *