Menu Close

Question-105598




Question Number 105598 by mohammad17 last updated on 30/Jul/20
Answered by Aziztisffola last updated on 30/Jul/20
L{e^(ax) }=∫_0 ^( ∞) e^(−sx)  e^(ax)  dx=∫_0 ^( ∞) e^(−sx+ax)   dx  =∣(1/(a−s)) e^((a−s)x) ∣_0 ^(x→∞) =0−(1/(a−s)) =(1/(s−a)) (s>a)  Hence L{e^(ax) }=(1/(s−a))
L{eax}=0esxeaxdx=0esx+axdx=∣1ase(as)x0x=01as=1sa(s>a)HenceL{eax}=1sa

Leave a Reply

Your email address will not be published. Required fields are marked *