Menu Close

Question-105599




Question Number 105599 by mohammad17 last updated on 30/Jul/20
Answered by bobhans last updated on 30/Jul/20
set z = y^(1−2) =y^(−1)   (dz/dx) = −y^(−2)  (dy/dx) ⇒−y^2  (dz/dx) = (dy/dx)   ⇔ −y^2  (dz/dx)+3xy = y^2 x^3   (dz/dx)−3zx=−x^3  ; integrating factor  u(x) = e^(−∫3x dx)  =  e^(−(3/2)x^2 )   z(x) = ((∫ e^(−(3/2)x^2 ) (−x^3 )dx+C)/e^(−(3/2)x^2 ) )   (1/y)= (1/3)e^((3x^2 )/2) { ∫x^2  e^(−((3x^2 )/2)) d(−((3x^2 )/2))}+Ce^((3x^2 )/2)   (1/y)= (1/3)e^((3x^2 )/2) {x^2 e^(−((3x^2 )/2)) +(2/3)e^(−((3x^2 )/2)) }+Ce^((3x^2 )/2)   (1/y)= (1/3)x^2 +(2/9)+Ce^((3x^2 )/2)  ★
$${set}\:{z}\:=\:{y}^{\mathrm{1}−\mathrm{2}} ={y}^{−\mathrm{1}} \\ $$$$\frac{{dz}}{{dx}}\:=\:−{y}^{−\mathrm{2}} \:\frac{{dy}}{{dx}}\:\Rightarrow−{y}^{\mathrm{2}} \:\frac{{dz}}{{dx}}\:=\:\frac{{dy}}{{dx}}\: \\ $$$$\Leftrightarrow\:−{y}^{\mathrm{2}} \:\frac{{dz}}{{dx}}+\mathrm{3}{xy}\:=\:{y}^{\mathrm{2}} {x}^{\mathrm{3}} \\ $$$$\frac{{dz}}{{dx}}−\mathrm{3}{zx}=−{x}^{\mathrm{3}} \:;\:{integrating}\:{factor} \\ $$$${u}\left({x}\right)\:=\:{e}^{−\int\mathrm{3}{x}\:{dx}} \:=\:\:{e}^{−\frac{\mathrm{3}}{\mathrm{2}}{x}^{\mathrm{2}} } \\ $$$${z}\left({x}\right)\:=\:\frac{\int\:{e}^{−\frac{\mathrm{3}}{\mathrm{2}}{x}^{\mathrm{2}} } \left(−{x}^{\mathrm{3}} \right){dx}+{C}}{{e}^{−\frac{\mathrm{3}}{\mathrm{2}}{x}^{\mathrm{2}} } }\: \\ $$$$\frac{\mathrm{1}}{{y}}=\:\frac{\mathrm{1}}{\mathrm{3}}{e}^{\frac{\mathrm{3}{x}^{\mathrm{2}} }{\mathrm{2}}} \left\{\:\int{x}^{\mathrm{2}} \:{e}^{−\frac{\mathrm{3}{x}^{\mathrm{2}} }{\mathrm{2}}} {d}\left(−\frac{\mathrm{3}{x}^{\mathrm{2}} }{\mathrm{2}}\right)\right\}+{Ce}^{\frac{\mathrm{3}{x}^{\mathrm{2}} }{\mathrm{2}}} \\ $$$$\frac{\mathrm{1}}{{y}}=\:\frac{\mathrm{1}}{\mathrm{3}}{e}^{\frac{\mathrm{3}{x}^{\mathrm{2}} }{\mathrm{2}}} \left\{{x}^{\mathrm{2}} {e}^{−\frac{\mathrm{3}{x}^{\mathrm{2}} }{\mathrm{2}}} +\frac{\mathrm{2}}{\mathrm{3}}{e}^{−\frac{\mathrm{3}{x}^{\mathrm{2}} }{\mathrm{2}}} \right\}+{Ce}^{\frac{\mathrm{3}{x}^{\mathrm{2}} }{\mathrm{2}}} \\ $$$$\frac{\mathrm{1}}{{y}}=\:\frac{\mathrm{1}}{\mathrm{3}}{x}^{\mathrm{2}} +\frac{\mathrm{2}}{\mathrm{9}}+{Ce}^{\frac{\mathrm{3}{x}^{\mathrm{2}} }{\mathrm{2}}} \:\bigstar \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *