Menu Close

Question-105951




Question Number 105951 by Study last updated on 01/Aug/20
Answered by Dwaipayan Shikari last updated on 01/Aug/20
(√(x/( (√(x/((x/)...))))))=p  (√(x/p))=p  p=(x)^(1/3)   ∫pdx=∫x^(1/3) dx=(3/4)x^(4/3) +C
$$\sqrt{\frac{{x}}{\:\sqrt{\frac{{x}}{\frac{{x}}{}…}}}}={p} \\ $$$$\sqrt{\frac{{x}}{{p}}}={p} \\ $$$${p}=\sqrt[{\mathrm{3}}]{{x}} \\ $$$$\int{pdx}=\int{x}^{\frac{\mathrm{1}}{\mathrm{3}}} {dx}=\frac{\mathrm{3}}{\mathrm{4}}{x}^{\frac{\mathrm{4}}{\mathrm{3}}} +{C} \\ $$
Commented by malwaan last updated on 02/Aug/20
(√x) = (√(x/( (√(x/.)))))   is this right ?
$$\sqrt{{x}}\:=\:\sqrt{\frac{{x}}{\:\sqrt{\frac{{x}}{.}}}}\: \\ $$$${is}\:{this}\:{right}\:? \\ $$
Commented by Her_Majesty last updated on 03/Aug/20
yes
$${yes} \\ $$
Answered by Her_Majesty last updated on 01/Aug/20
y=(√(x/( (√(x/(...))))))  ⇒  y^2 =(x/y)  ⇒  y=x^(1/3)   ∫x^(1/3) dx=(3/4)x^(4/3) +C
$${y}=\sqrt{\frac{{x}}{\:\sqrt{\frac{{x}}{…}}}} \\ $$$$\Rightarrow \\ $$$${y}^{\mathrm{2}} =\frac{{x}}{{y}} \\ $$$$\Rightarrow \\ $$$${y}={x}^{\frac{\mathrm{1}}{\mathrm{3}}} \\ $$$$\int{x}^{\frac{\mathrm{1}}{\mathrm{3}}} {dx}=\frac{\mathrm{3}}{\mathrm{4}}{x}^{\frac{\mathrm{4}}{\mathrm{3}}} +{C} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *