Menu Close

Question-106019




Question Number 106019 by ZiYangLee last updated on 02/Aug/20
Answered by ajfour last updated on 02/Aug/20
(3/(a+b+c))−((a+(a+b+c))/((a+b)(a+c)))=0  ⇒ 3(a+b)(a+c)−a(a+b+c)        −(a+b+c)^2 =0  a^2 +bc−b^2 −c^2 =0  ⇒  cos A=((b^2 +c^2 −a^2 )/(2bc)) = (1/2)  ⇒  A=60° .  So reverse is true as well.
$$\frac{\mathrm{3}}{{a}+{b}+{c}}−\frac{{a}+\left({a}+{b}+{c}\right)}{\left({a}+{b}\right)\left({a}+{c}\right)}=\mathrm{0} \\ $$$$\Rightarrow\:\mathrm{3}\left({a}+{b}\right)\left({a}+{c}\right)−{a}\left({a}+{b}+{c}\right) \\ $$$$\:\:\:\:\:\:−\left({a}+{b}+{c}\right)^{\mathrm{2}} =\mathrm{0} \\ $$$${a}^{\mathrm{2}} +{bc}−{b}^{\mathrm{2}} −{c}^{\mathrm{2}} =\mathrm{0} \\ $$$$\Rightarrow\:\:\mathrm{cos}\:{A}=\frac{{b}^{\mathrm{2}} +{c}^{\mathrm{2}} −{a}^{\mathrm{2}} }{\mathrm{2}{bc}}\:=\:\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\Rightarrow\:\:{A}=\mathrm{60}°\:. \\ $$$${So}\:{reverse}\:{is}\:{true}\:{as}\:{well}. \\ $$
Commented by ZiYangLee last updated on 02/Aug/20
  WoW THaNkS
$$ \\ $$$$\mathrm{WoW}\:\mathrm{THaNkS} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *