Menu Close

question-106075-again-1-cosx-99cosx-70sinx-210-cosx-66sinx-110-dx-using-t-tan-x-2-I-get-4-dt-t-4-8t-3-22t-2-272t-419-can-someone-factorize-the-denominator-




Question Number 106120 by Her_Majesty last updated on 02/Aug/20
question 106075 again  ∫((1+cosx)/((99cosx−70sinx+210)cosx−66sinx+110))dx=?  using t=tan(x/2) I get  −4∫(dt/(t^4 +8t^3 −22t^2 +272t−419))  can someone factorize the denominator?
$${question}\:\mathrm{106075}\:{again} \\ $$$$\int\frac{\mathrm{1}+{cosx}}{\left(\mathrm{99}{cosx}−\mathrm{70}{sinx}+\mathrm{210}\right){cosx}−\mathrm{66}{sinx}+\mathrm{110}}{dx}=? \\ $$$${using}\:{t}={tan}\left({x}/\mathrm{2}\right)\:{I}\:{get} \\ $$$$−\mathrm{4}\int\frac{{dt}}{{t}^{\mathrm{4}} +\mathrm{8}{t}^{\mathrm{3}} −\mathrm{22}{t}^{\mathrm{2}} +\mathrm{272}{t}−\mathrm{419}} \\ $$$${can}\:{someone}\:{factorize}\:{the}\:{denominator}? \\ $$
Commented by Sarah85 last updated on 03/Aug/20
typo: t^4 −8t^3 −22t^2 +272t−419  in this case  t= { ((2−(√3)−(√5)−(√(15)))),((2+(√3)+(√5)−(√(15)))),((2+(√3)−(√5)+(√(15)))),((2−(√3)+(√5)+(√(15)))) :}
$$\mathrm{typo}:\:{t}^{\mathrm{4}} −\mathrm{8}{t}^{\mathrm{3}} −\mathrm{22}{t}^{\mathrm{2}} +\mathrm{272}{t}−\mathrm{419} \\ $$$$\mathrm{in}\:\mathrm{this}\:\mathrm{case} \\ $$$${t}=\begin{cases}{\mathrm{2}−\sqrt{\mathrm{3}}−\sqrt{\mathrm{5}}−\sqrt{\mathrm{15}}}\\{\mathrm{2}+\sqrt{\mathrm{3}}+\sqrt{\mathrm{5}}−\sqrt{\mathrm{15}}}\\{\mathrm{2}+\sqrt{\mathrm{3}}−\sqrt{\mathrm{5}}+\sqrt{\mathrm{15}}}\\{\mathrm{2}−\sqrt{\mathrm{3}}+\sqrt{\mathrm{5}}+\sqrt{\mathrm{15}}}\end{cases} \\ $$
Commented by Her_Majesty last updated on 03/Aug/20
thanks but how you got it?
$${thanks}\:{but}\:{how}\:{you}\:{got}\:{it}? \\ $$
Commented by 1549442205PVT last updated on 03/Aug/20
t^4 −8t^3 −22t^2 +272t−419=0  ⇔[t^2 −(4−2(√(15)))t+11−6(√(15)) ]×  [t^2 −(4+2(√(15)))t+11+6(√(15))]=0  ⇔[t^2 −(4−2(√5))t−(9+10(√5))]×  [t^2 −(4+2(√5))t−(9−10(√5))]=0
$$\mathrm{t}^{\mathrm{4}} −\mathrm{8t}^{\mathrm{3}} −\mathrm{22t}^{\mathrm{2}} +\mathrm{272t}−\mathrm{419}=\mathrm{0} \\ $$$$\Leftrightarrow\left[\boldsymbol{\mathrm{t}}^{\mathrm{2}} −\left(\mathrm{4}−\mathrm{2}\sqrt{\mathrm{15}}\right)\boldsymbol{\mathrm{t}}+\mathrm{11}−\mathrm{6}\sqrt{\mathrm{15}}\:\right]× \\ $$$$\left[\boldsymbol{\mathrm{t}}^{\mathrm{2}} −\left(\mathrm{4}+\mathrm{2}\sqrt{\mathrm{15}}\right)\boldsymbol{\mathrm{t}}+\mathrm{11}+\mathrm{6}\sqrt{\mathrm{15}}\right]=\mathrm{0} \\ $$$$\Leftrightarrow\left[\boldsymbol{\mathrm{t}}^{\mathrm{2}} −\left(\mathrm{4}−\mathrm{2}\sqrt{\mathrm{5}}\right)\boldsymbol{\mathrm{t}}−\left(\mathrm{9}+\mathrm{10}\sqrt{\mathrm{5}}\right)\right]× \\ $$$$\left[\boldsymbol{\mathrm{t}}^{\mathrm{2}} −\left(\mathrm{4}+\mathrm{2}\sqrt{\mathrm{5}}\right)\boldsymbol{\mathrm{t}}−\left(\mathrm{9}−\mathrm{10}\sqrt{\mathrm{5}}\right)\right]=\mathrm{0} \\ $$
Answered by 1549442205PVT last updated on 03/Aug/20
t^4 +8t^3 −22t^2 +272t−419  =(t^2 +10.374065851t−19.19728528)×  (t^2 −2.374065851+21.82600076)  two real roots be  x_1 =1.602856312,x_2 =−11.97692216
$${t}^{\mathrm{4}} +\mathrm{8}{t}^{\mathrm{3}} −\mathrm{22}{t}^{\mathrm{2}} +\mathrm{272}{t}−\mathrm{419} \\ $$$$=\left(\mathrm{t}^{\mathrm{2}} +\mathrm{10}.\mathrm{374065851t}−\mathrm{19}.\mathrm{19728528}\right)× \\ $$$$\left(\mathrm{t}^{\mathrm{2}} −\mathrm{2}.\mathrm{374065851}+\mathrm{21}.\mathrm{82600076}\right) \\ $$$$\mathrm{two}\:\mathrm{real}\:\mathrm{roots}\:\mathrm{be} \\ $$$$\mathrm{x}_{\mathrm{1}} =\mathrm{1}.\mathrm{602856312},\mathrm{x}_{\mathrm{2}} =−\mathrm{11}.\mathrm{97692216} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *