Menu Close

Question-106237




Question Number 106237 by Study last updated on 03/Aug/20
Answered by Dwaipayan Shikari last updated on 03/Aug/20
(1/n)lim_(n→∞) (e^(1/n) +e^(2/n) +....+e^(n/n) )  (1/n)lim_(n→∞) Σ_(r=1) ^n e^(r/n)   ∫_0 ^1 e^x dx=e−1
$$\frac{\mathrm{1}}{{n}}\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left({e}^{\frac{\mathrm{1}}{{n}}} +{e}^{\frac{\mathrm{2}}{{n}}} +….+{e}^{\frac{{n}}{{n}}} \right) \\ $$$$\frac{\mathrm{1}}{{n}}\underset{{n}\rightarrow\infty} {\mathrm{lim}}\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}{e}^{\frac{{r}}{{n}}} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} {e}^{{x}} {dx}={e}−\mathrm{1} \\ $$
Commented by mohammad17 last updated on 03/Aug/20
can you exactily ghis sir ?
$${can}\:{you}\:{exactily}\:{ghis}\:{sir}\:? \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *