Question Number 106237 by Study last updated on 03/Aug/20
Answered by Dwaipayan Shikari last updated on 03/Aug/20
$$\frac{\mathrm{1}}{{n}}\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left({e}^{\frac{\mathrm{1}}{{n}}} +{e}^{\frac{\mathrm{2}}{{n}}} +….+{e}^{\frac{{n}}{{n}}} \right) \\ $$$$\frac{\mathrm{1}}{{n}}\underset{{n}\rightarrow\infty} {\mathrm{lim}}\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}{e}^{\frac{{r}}{{n}}} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} {e}^{{x}} {dx}={e}−\mathrm{1} \\ $$
Commented by mohammad17 last updated on 03/Aug/20
$${can}\:{you}\:{exactily}\:{ghis}\:{sir}\:? \\ $$