Question Number 106396 by I want to learn more last updated on 05/Aug/20
Commented by john santu last updated on 05/Aug/20
Commented by john santu last updated on 05/Aug/20
$$\left(\mathrm{1}\right)\mathrm{find}\:\mathrm{cos}\:\theta \\ $$$$\Rightarrow\mathrm{cos}\:\theta\:=\:\frac{\mathrm{81}+\mathrm{49}−\mathrm{25}}{\mathrm{2}.\mathrm{9}.\mathrm{7}}\:=\:\frac{\mathrm{105}}{\mathrm{126}} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{find}\:\mathrm{tan}\:\theta \\ $$$$\Rightarrow\mathrm{tan}\:\theta\:=\:\frac{\mathrm{21}\sqrt{\mathrm{11}}}{\mathrm{6}.\mathrm{21}}\:=\:\frac{\sqrt{\mathrm{11}}}{\mathrm{6}} \\ $$$$\left(\mathrm{3}\right)\:\mathrm{tan}\:\theta\:=\:\mathrm{tan}\:\theta\: \\ $$$$\Rightarrow\:\frac{\sqrt{\mathrm{11}}}{\mathrm{6}}\:=\:\frac{\mathrm{R}}{\mathrm{7}−\mathrm{R}}\:\Rightarrow\mathrm{7}\sqrt{\mathrm{11}}−\mathrm{R}\sqrt{\mathrm{11}}=\mathrm{6R} \\ $$$$\mathrm{7}\sqrt{\mathrm{11}}\:=\:\mathrm{R}\left(\mathrm{6}+\sqrt{\mathrm{11}}\right) \\ $$$$\Rightarrow\mathrm{R}\:=\:\frac{\mathrm{7}\sqrt{\mathrm{11}}}{\mathrm{6}+\sqrt{\mathrm{11}}}\:\Rightarrow\:\mathrm{diameter}=\mathrm{2R} \\ $$$$\rightarrow\mathrm{d}\:=\:\frac{\mathrm{14}\sqrt{\mathrm{11}}}{\mathrm{6}+\sqrt{\mathrm{11}}}\:×\frac{\mathrm{6}−\sqrt{\mathrm{11}}}{\mathrm{6}−\sqrt{\mathrm{11}}} \\ $$$$\rightarrow\mathrm{d}\:=\:\frac{\mathrm{84}\sqrt{\mathrm{11}}−\mathrm{154}}{\mathrm{25}}\:\approx\:\mathrm{4}.\mathrm{98386} \\ $$
Commented by I want to learn more last updated on 05/Aug/20
$$\mathrm{Thanks}\:\mathrm{sir} \\ $$
Answered by 1549442205PVT last updated on 05/Aug/20
Commented by 1549442205PVT last updated on 06/Aug/20