Menu Close

Question-106422




Question Number 106422 by Algoritm last updated on 05/Aug/20
Commented by mr W last updated on 05/Aug/20
73!=1×2×3×...×49×50×...×73  73!=0 (mod 2)  73!=0 (mod 3)  73!=0 (mod 4)  ...  73!=0 (mod 49)  73!=0 (mod 50)  ...  73!=0 (mod 73)
$$\mathrm{73}!=\mathrm{1}×\mathrm{2}×\mathrm{3}×…×\mathrm{49}×\mathrm{50}×…×\mathrm{73} \\ $$$$\mathrm{73}!=\mathrm{0}\:\left({mod}\:\mathrm{2}\right) \\ $$$$\mathrm{73}!=\mathrm{0}\:\left({mod}\:\mathrm{3}\right) \\ $$$$\mathrm{73}!=\mathrm{0}\:\left({mod}\:\mathrm{4}\right) \\ $$$$… \\ $$$$\mathrm{73}!=\mathrm{0}\:\left({mod}\:\mathrm{49}\right) \\ $$$$\mathrm{73}!=\mathrm{0}\:\left({mod}\:\mathrm{50}\right) \\ $$$$… \\ $$$$\mathrm{73}!=\mathrm{0}\:\left({mod}\:\mathrm{73}\right) \\ $$
Answered by Olaf last updated on 24/Sep/20
73! = 48!×49×((73!)/(49!))  73! = 49k with k = ((73!)/(49))  ⇒73! ≡ 0 [49]
$$\mathrm{73}!\:=\:\mathrm{48}!×\mathrm{49}×\frac{\mathrm{73}!}{\mathrm{49}!} \\ $$$$\mathrm{73}!\:=\:\mathrm{49}{k}\:\mathrm{with}\:{k}\:=\:\frac{\mathrm{73}!}{\mathrm{49}} \\ $$$$\Rightarrow\mathrm{73}!\:\equiv\:\mathrm{0}\:\left[\mathrm{49}\right] \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *