Question Number 106572 by DeepakMahato last updated on 06/Aug/20
Commented by Rasheed.Sindhi last updated on 06/Aug/20
$$\:\:\:\:\underset{−} {\:\:\:\:\:\:\:{Still}\:{another}\:{way}\:\:\:\:\:\:\:\:} \\ $$$${Roots}\left({zeros}\right)\:{of}\:{ax}^{\mathrm{2}} +{bx}+{c}=\mathrm{0} \\ $$$${are}: \\ $$$$\:{x}=\frac{−{b}\pm\sqrt{{b}^{\mathrm{2}} −\mathrm{4}{ac}}}{\mathrm{2}{a}}=\frac{−{b}}{\mathrm{2}{a}}\pm\frac{\sqrt{{b}^{\mathrm{2}} −\mathrm{4}{ac}}}{\mathrm{2}{a}} \\ $$$${If}\:{the}\:{roots}\:{are}\:{oppsite}\:{to}\:{each} \\ $$$${other},{then}\:\frac{−{b}}{\mathrm{2}{a}}=\mathrm{0} \\ $$$$\:{So}\:\:\:\:\:\:\frac{−\left(−\mathrm{8}{k}\right)}{\mathrm{2}\left(\mathrm{4}\right)}=\mathrm{0}\Rightarrow{k}=\mathrm{0} \\ $$
Commented by DeepakMahato last updated on 06/Aug/20
Thank You Sir
Answered by bemath last updated on 06/Aug/20
$$\mathrm{say}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{polynome}\:\mathrm{is}\:\rightarrow\begin{cases}{\mathrm{x}_{\mathrm{1}} }\\{\mathrm{x}_{\mathrm{2}} =−\mathrm{x}_{\mathrm{1}} }\end{cases} \\ $$$$\mathrm{then}\:\mathrm{by}\:\mathrm{Vieta}'\mathrm{s}\:\mathrm{rule}\:\Rightarrow\mathrm{x}_{\mathrm{1}} +\mathrm{x}_{\mathrm{2}} =−\frac{\mathrm{b}}{\mathrm{a}} \\ $$$$\frac{\mathrm{8k}}{\mathrm{4}}\:=\:\mathrm{0}\:\Rightarrow\:\mathrm{k}\:=\:\mathrm{0}\: \\ $$$$\mathrm{then}\:\mathrm{f}\left(\mathrm{x}\right)\:=\:\mathrm{4x}^{\mathrm{2}} −\mathrm{9}=\left(\mathrm{2x}+\mathrm{3}\right)\left(\mathrm{2x}−\mathrm{3}\right) \\ $$
Commented by DeepakMahato last updated on 06/Aug/20
Thank You Sir
Answered by Rasheed.Sindhi last updated on 06/Aug/20
$$\:\:\:\:\underset{−} {\:\:\:\:{AnOther}\:{Way}\:\:\:\:} \\ $$$$\mathrm{4}\left(\alpha\right)^{\mathrm{2}} −\mathrm{8}{k}\left(\alpha\right)−\mathrm{9}=\mathrm{0}=\mathrm{4}\left(−\alpha\right)^{\mathrm{2}} −\mathrm{8}{k}\left(−\alpha\right)−\mathrm{9} \\ $$$$\mathrm{4}\alpha^{\mathrm{2}} −\mathrm{8}{k}\alpha−\mathrm{9}=\mathrm{4}\alpha^{\mathrm{2}} +\mathrm{8}{k}\alpha−\mathrm{9} \\ $$$$−\mathrm{8}{k}=\mathrm{8}{k}\Rightarrow{k}=\mathrm{0} \\ $$
Commented by john santu last updated on 06/Aug/20
$$\mathrm{how}\:\mathrm{to}\:\mathrm{make}\:\mathrm{underline}\:\mathrm{sir}? \\ $$
Commented by Rasheed.Sindhi last updated on 06/Aug/20
Commented by Rasheed.Sindhi last updated on 06/Aug/20
$$\left.\mathrm{1}\right)\:{Select}\:{the}\:{text} \\ $$$$\left.\mathrm{2}\right){Press}\:{the}\:{shown}\:{structure} \\ $$$$\left.\mathrm{3}\right){Click}\:{minus}\:{sign}\:'−' \\ $$
Commented by john santu last updated on 06/Aug/20
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir}\: \\ $$
Commented by Tinku Tara last updated on 06/Aug/20
$$\mathrm{In}\:\mathrm{offline}\:\mathrm{editor}\:\mathrm{there}\:\mathrm{is}\:\mathrm{select} \\ $$$$\mathrm{and}\:\mathrm{underline}\:\mathrm{option}. \\ $$