Menu Close

Question-106663




Question Number 106663 by I want to learn more last updated on 06/Aug/20
Answered by Her_Majesty last updated on 06/Aug/20
(y/6)=(6/x) ⇒ y=((36)/x)  (x+6)^2 +(y+6)^2 =20^2   ⇒  x^4 +12x^3 −328x^2 +432x+1296=0  (x^2 +(6−2(√(109)))x+36)(x^2 +(6+2(√(109)))x+36)=0  x>0  ⇒  x=−3+(√(109))±(√(82−6(√(109))))  x>y  ⇒  x=−3+(√(109))+(√(82−6(√(109))))  y=−3+(√(109))−(√(82−6(√(109))))
$$\frac{{y}}{\mathrm{6}}=\frac{\mathrm{6}}{{x}}\:\Rightarrow\:{y}=\frac{\mathrm{36}}{{x}} \\ $$$$\left({x}+\mathrm{6}\right)^{\mathrm{2}} +\left({y}+\mathrm{6}\right)^{\mathrm{2}} =\mathrm{20}^{\mathrm{2}} \\ $$$$\Rightarrow \\ $$$${x}^{\mathrm{4}} +\mathrm{12}{x}^{\mathrm{3}} −\mathrm{328}{x}^{\mathrm{2}} +\mathrm{432}{x}+\mathrm{1296}=\mathrm{0} \\ $$$$\left({x}^{\mathrm{2}} +\left(\mathrm{6}−\mathrm{2}\sqrt{\mathrm{109}}\right){x}+\mathrm{36}\right)\left({x}^{\mathrm{2}} +\left(\mathrm{6}+\mathrm{2}\sqrt{\mathrm{109}}\right){x}+\mathrm{36}\right)=\mathrm{0} \\ $$$${x}>\mathrm{0} \\ $$$$\Rightarrow \\ $$$${x}=−\mathrm{3}+\sqrt{\mathrm{109}}\pm\sqrt{\mathrm{82}−\mathrm{6}\sqrt{\mathrm{109}}} \\ $$$${x}>{y} \\ $$$$\Rightarrow \\ $$$${x}=−\mathrm{3}+\sqrt{\mathrm{109}}+\sqrt{\mathrm{82}−\mathrm{6}\sqrt{\mathrm{109}}} \\ $$$${y}=−\mathrm{3}+\sqrt{\mathrm{109}}−\sqrt{\mathrm{82}−\mathrm{6}\sqrt{\mathrm{109}}} \\ $$
Answered by Aziztisffola last updated on 06/Aug/20
solve  (x/(x+6))=(6/(y+6))=((x^2 +36)/(20))  (x/(x+6))=(6/(y+6)) ⇔6(x+6)=x(y+6)  ⇔y=((36)/x) and x>0.
$$\mathrm{solve} \\ $$$$\frac{\mathrm{x}}{\mathrm{x}+\mathrm{6}}=\frac{\mathrm{6}}{\mathrm{y}+\mathrm{6}}=\frac{\mathrm{x}^{\mathrm{2}} +\mathrm{36}}{\mathrm{20}} \\ $$$$\frac{\mathrm{x}}{\mathrm{x}+\mathrm{6}}=\frac{\mathrm{6}}{\mathrm{y}+\mathrm{6}}\:\Leftrightarrow\mathrm{6}\left(\mathrm{x}+\mathrm{6}\right)=\mathrm{x}\left(\mathrm{y}+\mathrm{6}\right) \\ $$$$\Leftrightarrow\mathrm{y}=\frac{\mathrm{36}}{\mathrm{x}}\:\mathrm{and}\:\mathrm{x}>\mathrm{0}. \\ $$$$ \\ $$
Commented by prakash jain last updated on 06/Aug/20
Use + button at top to add a new  question
$$\mathrm{Use}\:+\:\mathrm{button}\:\mathrm{at}\:\mathrm{top}\:\mathrm{to}\:\mathrm{add}\:\mathrm{a}\:\mathrm{new} \\ $$$$\mathrm{question} \\ $$
Commented by Aziztisffola last updated on 06/Aug/20
it′s just a part of answer sir isn′t a new topic.
$$\mathrm{it}'\mathrm{s}\:\mathrm{just}\:\mathrm{a}\:\mathrm{part}\:\mathrm{of}\:\mathrm{answer}\:\mathrm{sir}\:\mathrm{isn}'\mathrm{t}\:\mathrm{a}\:\mathrm{new}\:\mathrm{topic}. \\ $$
Commented by prakash jain last updated on 06/Aug/20
Ok. I see now my mistake. Sorry.
$$\mathrm{Ok}.\:\mathrm{I}\:\mathrm{see}\:\mathrm{now}\:\mathrm{my}\:\mathrm{mistake}.\:\mathrm{Sorry}. \\ $$
Commented by Aziztisffola last updated on 06/Aug/20
 no problem sir
$$\:\mathrm{no}\:\mathrm{problem}\:\mathrm{sir} \\ $$
Commented by I want to learn more last updated on 06/Aug/20
How do you get the equation sir?
$$\mathrm{How}\:\mathrm{do}\:\mathrm{you}\:\mathrm{get}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{sir}? \\ $$
Commented by Her_Majesty last updated on 06/Aug/20
but you see I found a positive solution?  so where′s the error? one of us must be  wrong at least...
$${but}\:{you}\:{see}\:{I}\:{found}\:{a}\:{positive}\:{solution}? \\ $$$${so}\:{where}'{s}\:{the}\:{error}?\:{one}\:{of}\:{us}\:{must}\:{be} \\ $$$${wrong}\:{at}\:{least}… \\ $$
Commented by Aziztisffola last updated on 06/Aug/20
Thales and pythagor theorem.
$$\mathrm{Thales}\:\mathrm{and}\:\mathrm{pythagor}\:\mathrm{theorem}. \\ $$
Commented by Her_Majesty last updated on 06/Aug/20
x^3 +6x^2 +16x+216=0  has only 1 real solution x≈−7.62
$$\mathrm{x}^{\mathrm{3}} +\mathrm{6x}^{\mathrm{2}} +\mathrm{16x}+\mathrm{216}=\mathrm{0} \\ $$$${has}\:{only}\:\mathrm{1}\:{real}\:{solution}\:{x}\approx−\mathrm{7}.\mathrm{62} \\ $$
Commented by Aziztisffola last updated on 06/Aug/20
yes sir,doesn′t have no positive solution
$$\mathrm{yes}\:\mathrm{sir},\mathrm{doesn}'\mathrm{t}\:\mathrm{have}\:\mathrm{no}\:\mathrm{positive}\:\mathrm{solution} \\ $$
Commented by Aziztisffola last updated on 11/Aug/20
this equation (x+6)^2 +(y+6)^2 =400  have two solutions one of them (positive) is the   answer of problem.
$$\mathrm{this}\:\mathrm{equation}\:\left(\mathrm{x}+\mathrm{6}\right)^{\mathrm{2}} +\left(\mathrm{y}+\mathrm{6}\right)^{\mathrm{2}} =\mathrm{400} \\ $$$$\mathrm{have}\:\mathrm{two}\:\mathrm{solutions}\:\mathrm{one}\:\mathrm{of}\:\mathrm{them}\:\left(\mathrm{positive}\right)\:\mathrm{is}\:\mathrm{the} \\ $$$$\:\mathrm{answer}\:\mathrm{of}\:\mathrm{problem}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *