Menu Close

Question-107124




Question Number 107124 by Khalmohmmad last updated on 08/Aug/20
Answered by mathmax by abdo last updated on 08/Aug/20
let f(x) =((3^(πx) −1)/(πx))  we have 3^(πx)  =e^(πxln(3))  =1+πxln(3) +o(x^2 ) ⇒  ((e^(πxln3) −1)/(πx)) =ln(3)+o(x) ⇒lim_(x→0) f(x) =ln(3)
letf(x)=3πx1πxwehave3πx=eπxln(3)=1+πxln(3)+o(x2)eπxln31πx=ln(3)+o(x)limx0f(x)=ln(3)
Answered by JDamian last updated on 08/Aug/20
3^(πx)  = 1+ ((πln 3)/(1!))x+(((πln 3)^2 )/(2!))x^2 + ∙∙∙    lim_(x→0) (((3^(πx) −1)/(πx)))=lim_(x→0) (ln 3+(((πln 3)^2 )/(2! π))x+ ∙∙∙)=  = ln 3
3πx=1+πln31!x+(πln3)22!x2+limx0(3πx1πx)=limx0(ln3+(πln3)22!πx+)==ln3

Leave a Reply

Your email address will not be published. Required fields are marked *